Automated detection of mild and multi-class diabetic eye diseases using deep learning

被引:0
|
作者
Rubina Sarki
Khandakar Ahmed
Hua Wang
Yanchun Zhang
机构
[1] Victoria University,
关键词
Diabetic eye disease; Deep learning; Classification; Image processing;
D O I
暂无
中图分类号
学科分类号
摘要
Diabetic eye disease is a collection of ocular problems that affect patients with diabetes. Thus, timely screening enhances the chances of timely treatment and prevents permanent vision impairment. Retinal fundus images are a useful resource to diagnose retinal complications for ophthalmologists. However, manual detection can be laborious and time-consuming. Therefore, developing an automated diagnose system reduces the time and workload for ophthalmologists. Recently, the image classification using Deep Learning (DL) in between healthy or diseased retinal fundus image classification already achieved a state of the art performance. While the classification of mild and multi-class diseases remains an open challenge, therefore, this research aimed to build an automated classification system considering two scenarios: (i) mild multi-class diabetic eye disease (DED), and (ii) multi-class DED. Our model tested on various datasets, annotated by an opthalmologist. The experiment conducted employing the top two pretrained convolutional neural network (CNN) models on ImageNet. Furthermore, various performance improvement techniques were employed, i.e., fine-tune, optimization, and contrast enhancement. Maximum accuracy of 88.3% obtained on the VGG16 model for multi-class classification and 85.95% for mild multi-class classification.
引用
收藏
相关论文
共 50 条
  • [31] An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning
    Asif, Sohaib
    Zhao, Ming
    Tang, Fengxiao
    Zhu, Yusen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31709 - 31736
  • [32] An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning
    Sohaib Asif
    Ming Zhao
    Fengxiao Tang
    Yusen Zhu
    Multimedia Tools and Applications, 2023, 82 : 31709 - 31736
  • [33] Balanced Multi-Class Network Intrusion Detection Using Machine Learning
    Khan, Faraz Ahmad
    Shah, Asghar Ali
    Alshammry, Nizal
    Saif, Saifullah
    Khan, Wasim
    Malik, Muhammad Osama
    Ullah, Zahid
    IEEE ACCESS, 2024, 12 : 178222 - 178236
  • [34] Convolutional Neural Network for Multi-class Classification of Diabetic Eye Disease
    Sarki, Rubina
    Ahmed, Khandakar
    Wang, Hua
    Zhang, Yanchun
    Wang, Kate
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (04)
  • [35] Multi-Class Segmentation of Lung Immunofluorescence Confocal Images Using Deep Learning
    Isaka, Shu
    Kawanaka, Hiroharu
    Aronow, Bruce J.
    Prasath, V. B. Surya
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 2362 - 2368
  • [36] Multi-Class Retinopathy classification in Fundus Image using Deep Learning Approaches
    Wankhade, Nisha R.
    Bhoyar, Kishor K.
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 807 - 816
  • [37] Sparse Representation Using Deep Learning to Classify Multi-Class Complex Data
    Fard, Seyed Mehdi Hazrati
    Hashemi, Sattar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2019, 43 (Suppl 1) : 637 - 647
  • [38] Multi-class Segmentation of Neuronal Electron Microscopy Images Using Deep Learning
    Khobragade, Nivedita
    Agarwal, Chirag
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [39] DeepFood: Automatic Multi-Class Classification of Food Ingredients Using Deep Learning
    Pan, Lili
    Pouyanfar, Samira
    Chen, Hao
    Qin, Jiaohua
    Chen, Shu-Ching
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), 2017, : 181 - 189
  • [40] Sparse Representation Using Deep Learning to Classify Multi-Class Complex Data
    Seyed Mehdi Hazrati Fard
    Sattar Hashemi
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43 : 637 - 647