The b-Chromatic Index of a Graph

被引:0
|
作者
Marko Jakovac
Iztok Peterin
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] University of Maribor,Faculty of Electrical Engineering and Computer Science
关键词
b-chromatic index; Regular graphs; Trees; 05C15; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
The b-chromatic index φ′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi '(G)$$\end{document} of a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is the largest integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} such that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} admits a proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-edge coloring in which every color class contains at least one edge incident to some edge in all the other color classes. The b-chromatic index of trees is determined and equals either to a natural upper bound m′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(T)$$\end{document} or one less, where m′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(T)$$\end{document} is connected with the number of edges of high degree. Some conditions are given for which graphs have the b-chromatic index strictly less than m′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(G)$$\end{document}, and for which conditions it is exactly m′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(G)$$\end{document}. In the last part of the paper, regular graphs are considered. It is proved that with four exceptions, the b-chromatic index of cubic graphs is 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5$$\end{document}. The exceptions are K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document}, K3,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,3}$$\end{document}, the prism over K3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_3$$\end{document}, and the cube Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_3$$\end{document}.
引用
收藏
页码:1375 / 1392
页数:17
相关论文
共 50 条
  • [21] On the parameterized complexity of b-CHROMATIC NUMBER
    Panolan, Fahad
    Philip, Geevarghese
    Saurabh, Saket
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 84 : 120 - 131
  • [22] On the b-chromatic number of regular graphs
    Cabello, Sergio
    Jakovac, Marko
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (13) : 1303 - 1310
  • [23] The b-chromatic number of powers of cycles
    Kohl, Anja
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (01): : 147 - 156
  • [24] On the b-chromatic number of Kneser graphs
    Hajiabolhassan, Hossein
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (03) : 232 - 234
  • [25] Hybrid evolutionary algorithm for the b-chromatic number
    Fister, Iztok
    Peterin, Iztok
    Mernik, Marjan
    Crepinsek, Matej
    JOURNAL OF HEURISTICS, 2015, 21 (04) : 501 - 521
  • [26] b-chromatic numbers of powers of paths and cycles
    Lin, Wu-Hsiung
    Chang, Gerard J.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2532 - 2536
  • [27] Bounds for the b-chromatic number of G - v
    Balakrishnan, R.
    Raj, S. Francis
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (09) : 1173 - 1179
  • [28] The b-chromatic number of some power graphs
    Effantin, B
    Kheddouci, H
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2003, 6 (01): : 45 - 54
  • [29] The b-chromatic number of certain graphs and digraphs
    Kok, Johan
    Sudev, N. K.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2016, 19 (02): : 435 - 445
  • [30] A Note on the b-Chromatic Number of Corona of Graphs
    Lisna, P. C.
    Sunitha, M. S.
    JOURNAL OF INTERCONNECTION NETWORKS, 2015, 15 (1-2)