The b-chromatic index φ′(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi '(G)$$\end{document} of a graph G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} is the largest integer k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document} such that G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} admits a proper k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-edge coloring in which every color class contains at least one edge incident to some edge in all the other color classes. The b-chromatic index of trees is determined and equals either to a natural upper bound m′(T)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m'(T)$$\end{document} or one less, where m′(T)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m'(T)$$\end{document} is connected with the number of edges of high degree. Some conditions are given for which graphs have the b-chromatic index strictly less than m′(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m'(G)$$\end{document}, and for which conditions it is exactly m′(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m'(G)$$\end{document}. In the last part of the paper, regular graphs are considered. It is proved that with four exceptions, the b-chromatic index of cubic graphs is 5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$5$$\end{document}. The exceptions are K4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_4$$\end{document}, K3,3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{3,3}$$\end{document}, the prism over K3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_3$$\end{document}, and the cube Q3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_3$$\end{document}.
机构:
Univ Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, BrazilUniv Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Campos, Victor A.
Lima, Carlos V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Univ Fed Rio de Janeiro, COPPE, BR-21945 Rio De Janeiro, RJ, BrazilUniv Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Lima, Carlos V.
Martins, Nicolas A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, BrazilUniv Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Martins, Nicolas A.
Sampaio, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Univ Estadual Ceara, Fortaleza, Ceara, BrazilUniv Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Sampaio, Leonardo
Santos, Marcio C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Univ Technol Compiegne, F-60200 Compiegne, FranceUniv Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
Santos, Marcio C.
Silva, Ana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, BrazilUniv Fed Ceara, ParGO Res Grp, Fortaleza, Ceara, Brazil
机构:
RVS Fac Engn, RVS Educ Trusts Grp Inst, Dept Math, Coimbatore 641402, Tamil Nadu, India
Anna Univ Technol, Coimbatore, Tamil Nadu, IndiaRVS Fac Engn, RVS Educ Trusts Grp Inst, Dept Math, Coimbatore 641402, Tamil Nadu, India
Venkatachalam, M.
Vernold, Vivin J.
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ Technol Tirunelveli, Univ Coll Engn, Dept Math, Nagercoil 629004, Tamil Nadu, IndiaRVS Fac Engn, RVS Educ Trusts Grp Inst, Dept Math, Coimbatore 641402, Tamil Nadu, India