The b-Chromatic Index of a Graph

被引:0
|
作者
Marko Jakovac
Iztok Peterin
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] University of Maribor,Faculty of Electrical Engineering and Computer Science
关键词
b-chromatic index; Regular graphs; Trees; 05C15; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
The b-chromatic index φ′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi '(G)$$\end{document} of a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is the largest integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} such that G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} admits a proper k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-edge coloring in which every color class contains at least one edge incident to some edge in all the other color classes. The b-chromatic index of trees is determined and equals either to a natural upper bound m′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(T)$$\end{document} or one less, where m′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(T)$$\end{document} is connected with the number of edges of high degree. Some conditions are given for which graphs have the b-chromatic index strictly less than m′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(G)$$\end{document}, and for which conditions it is exactly m′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m'(G)$$\end{document}. In the last part of the paper, regular graphs are considered. It is proved that with four exceptions, the b-chromatic index of cubic graphs is 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5$$\end{document}. The exceptions are K4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4$$\end{document}, K3,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,3}$$\end{document}, the prism over K3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_3$$\end{document}, and the cube Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_3$$\end{document}.
引用
收藏
页码:1375 / 1392
页数:17
相关论文
共 50 条
  • [1] The b-Chromatic Index of a Graph
    Jakovac, Marko
    Peterin, Iztok
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (04) : 1375 - 1392
  • [2] The b-chromatic number of a graph
    Irving, RW
    Manlove, DF
    DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 127 - 141
  • [3] b-Chromatic sum of a graph
    Lisna, P. C.
    Sunitha, M. S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [4] The b-chromatic index of graphs
    Campos, Victor A.
    Lima, Carlos V.
    Martins, Nicolas A.
    Sampaio, Leonardo
    Santos, Marcio C.
    Silva, Ana
    DISCRETE MATHEMATICS, 2015, 338 (11) : 2072 - 2079
  • [5] On the Grundy and b-Chromatic Numbers of a Graph
    Frédéric Havet
    Leonardo Sampaio
    Algorithmica, 2013, 65 : 885 - 899
  • [6] On the Grundy and b-Chromatic Numbers of a Graph
    Havet, Frederic
    Sampaio, Leonardo
    ALGORITHMICA, 2013, 65 (04) : 885 - 899
  • [7] ON THE b-CHROMATIC NUMBER OF SOME GRAPH PRODUCTS
    Jakovac, Marko
    Peterin, Iztok
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (02) : 156 - 169
  • [8] Some bounds for the b-chromatic number of a graph
    Kouider, M
    Mahéo, M
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 267 - 277
  • [9] THE b-CHROMATIC NUMBER OF STAR GRAPH FAMILIES
    Venkatachalam, M.
    Vernold, Vivin J.
    MATEMATICHE, 2010, 65 (01): : 119 - 125
  • [10] On b-chromatic Number of Prism Graph Families
    Ansari, Nadeem
    Chandel, R. S.
    Jamal, Rizwana
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 286 - 295