Design thinking-driven development of a modular X-Band antenna using multi-material 3D printing

被引:0
|
作者
S. Myllymäki
E. Hannila
M. Kokkonen
H. Jantunen
T. Fabritius
机构
[1] University of Oulu,Microelectronics Research Unit
[2] University of Oulu,Optoelectronics and Measurement Techniques Unit
来源
International Journal on Interactive Design and Manufacturing (IJIDeM) | 2024年 / 18卷
关键词
3D printing; Radio frequency antenna; Modular design; Design thinking (DT); Design for manufacture and assembly (DfMA); Multi-material 3D printing;
D O I
暂无
中图分类号
学科分类号
摘要
This study presents the development of a modular parasitic patch antenna using 3D printing and the Design Thinking (DT) methodology. The antenna structure, manufactured with insulating polycarbonate and conductive silver lines, incorporates a reflector, main antenna, and parasitic patch. The study demonstrates the successful application of DT and Design for Manufacture and Assembly (DfMA) principles in optimizing manufacturing efficiency and assembly effectiveness. Simulations and measurements confirm the satisfactory performance of the 3D printed antenna, with a minimum reflection coefficient of -15 dB, efficiency reaching up to 75%, and gain falling within the range of conventionally fabricated antennas. The integration of insulator and conductor materials in 3D printing facilitates the manufacturing of complex structures, while the modular design enables easy installation and customization. This research contributes to the advancement of 3D printing technology for microwave applications, offering cost-effective and efficient manufacturing solutions for industrial antenna production.
引用
收藏
页码:901 / 910
页数:9
相关论文
共 50 条
  • [21] MultiJam: Fabricating Jamming User Interface using Multi-material 3D Printing
    Yang, Munseok
    Yamaoka, Junichi
    TEI'22: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, 2022,
  • [22] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Ziqi Gao
    Jun Yin
    Peng Liu
    Qi Li
    Runan Zhang
    Huayong Yang
    Hongzhao Zhou
    International Journal of Extreme Manufacturing, 2023, 5 (03) : 491 - 504
  • [23] A Multi-Material 3D Printing Approach for Conformal Microwave Antennas
    Hawatmeh, D.
    Rojas-Nastrucci, E.
    Weller, T.
    2016 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2016, : 7 - 10
  • [24] Learning Deposition Policies for Fused Multi-Material 3D Printing
    Liao, Kang
    Tricard, Thibault
    Piovarci, Michal
    Seidel, Hans-Peter
    Babaei, Vahid
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 12345 - 12352
  • [25] A review on polyjet 3D printing of polymers and multi-material structures
    Patpatiya, Parth
    Chaudhary, Kailash
    Shastri, Anshuman
    Sharma, Shailly
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (14) : 7899 - 7926
  • [26] Sustainable Manufacturing through Digital Multi-Material 3D Printing
    Naveed, Nida
    Anwar, Muhammad Naveed
    2024 29TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING, ICAC 2024, 2024, : 429 - 433
  • [27] Fabrication of biomimetic bone grafts with multi-material 3D printing
    Sears, Nicholas
    Dhavalikar, Prachi
    Whitely, Michael
    Cosgriff-Hernandez, Elizabeth
    BIOFABRICATION, 2017, 9 (02)
  • [28] Simultaneous multi-material embedded printing for 3D heterogeneous structures
    Gao, Ziqi
    Yin, Jun
    Liu, Peng
    Li, Qi
    Zhang, Runan
    Yang, Huayong
    Zhou, Hongzhao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (03)
  • [29] ACTIVE MIXING NOZZLE FOR MULTI-MATERIAL AND MULTI-SCALE 3D PRINTING
    Lan, Hongbo
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 2, 2017,
  • [30] Path Optimization for Multi-material 3D Printing Using Self-organizing Maps
    Pinochet, Diego
    Tsamis, Alexandros
    COMPUTER-AIDED ARCHITECTURAL DESIGN: DESIGN IMPERATIVES: THE FUTURE IS NOW, 2022, 1465 : 329 - 343