MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer

被引:0
|
作者
Vetri Sudar Jayaprakasam
Viktoriya Paroder
Peter Gibbs
Raazi Bajwa
Natalie Gangai
Ramon E. Sosa
Iva Petkovska
Jennifer S. Golia Pernicka
James Louis Fuqua
David D. B. Bates
Martin R. Weiser
Andrea Cercek
Marc J. Gollub
机构
[1] Memorial Sloan Kettering Cancer Center,Department of Radiology
[2] Memorial Sloan Kettering Cancer Center,Colorectal Service, Department of Surgery
[3] Memorial Sloan Kettering Cancer Center,Department of Medicine
来源
European Radiology | 2022年 / 32卷
关键词
Magnetic resonance imaging; Rectal neoplasms; Adipose tissue; Neoadjuvant therapy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:971 / 980
页数:9
相关论文
共 50 条
  • [21] Machine Learning of Histomorphological Features Predict Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer
    Wang, Anqi
    Ding, Ruiqi
    Zhang, Jing
    Zhang, Beibei
    Huang, Xiaolin
    Zhou, Haiyang
    JOURNAL OF GASTROINTESTINAL SURGERY, 2023, 27 (01) : 162 - 165
  • [22] Best MRI predictors of complete response to neoadjuvant chemoradiation in locally advanced rectal cancer
    Sathyakumar, Kirthi
    Chandramohan, Anuradha
    Masih, Dipti
    Jesudasan, Mark Ranjan
    Pulimood, Anna
    Eapen, Anu
    BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1060):
  • [23] Machine Learning of Histomorphological Features Predict Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer
    Anqi Wang
    Ruiqi Ding
    Jing Zhang
    Beibei Zhang
    Xiaolin Huang
    Haiyang Zhou
    Journal of Gastrointestinal Surgery, 2023, 27 : 162 - 165
  • [24] Pretreatment MRI Radiomic Features Correlate With Pathologic Response and Metastasis in Patients Receiving Neoadjuvant Chemoradiation for Locally Advanced Rectal Cancer
    Boimel, P. J.
    Zhong, H.
    Janopaul-Naylor, J.
    Fan, Y.
    Rosen, M.
    Lukens, J. N.
    Xiao, Y.
    Ben-Josef, E.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : S190 - S190
  • [25] MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer
    Park, Hayeong
    Kim, Kyung Ah
    Jung, Ji-Han
    Rhie, Jeongbae
    Choi, Sun Young
    EUROPEAN RADIOLOGY, 2020, 30 (08) : 4201 - 4211
  • [26] MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer
    Hayeong Park
    Kyung Ah Kim
    Ji-Han Jung
    Jeongbae Rhie
    Sun Young Choi
    European Radiology, 2020, 30 : 4201 - 4211
  • [27] Combining Radiomics and Blood Test Biomarkers to Predict the Response of Locally Advanced Rectal Cancer to Chemoradiation
    Jeon, Seung Hyuck
    Song, Changhoon
    Chie, Eui Kyu
    Kim, Bohyoung
    Kim, Young Hoon
    Chang, Won
    Lee, Yoon Jin
    Chung, Joo-Hyun
    Chung, Jin Beom
    Lee, Keun-Wook
    Kang, Sung-Bum
    Kim, Jae-Sung
    IN VIVO, 2020, 34 (05): : 2955 - 2965
  • [28] Neoadjuvant Chemoradiation Therapy for All Elderly Patients With Locally Advanced Rectal Cancer?
    Guillem, Jose G.
    Luo, William Y.
    Agala, Chris B.
    JAMA SURGERY, 2022, 157 (11)
  • [29] Tumor biomarkers to predict complete clinical response to total neoadjuvant therapy in locally advanced rectal cancer patients
    Becnel, C.
    Ray, A.
    Matrana, H.
    Zibilich, C.
    Maresh, G.
    Zhang, X.
    Paruch, J.
    Li, L.
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2024, 367 : S465 - S467
  • [30] Integrating Tumor and Nodal Radiomics to Predict the Response to Neoadjuvant Chemotherapy and Recurrence Risk for Locally Advanced Gastric Cancer
    Han, Shimei
    Han, Xiaomeng
    Song, Yaolin
    Liu, Ruiqing
    Wang, Hexiang
    Zhang, Zaixian
    Yu, Bohua
    Li, Zhiming
    Liu, Shunli
    CURRENT MEDICAL IMAGING, 2024,