The reactive bargaining set: Structure, dynamics and extension to NTU games

被引:1
|
作者
Granot D. [1 ]
Maschler M. [1 ]
机构
[1] Fac. of Comm. and Bus. Admin., University of British Columbia, 2053 Main Mall, Vancouver
关键词
Bargaining set; Cooperative games; Games; Kernel; Projective game; Reactive bargaining set;
D O I
10.1007/BF01262514
中图分类号
学科分类号
摘要
The reactive bargaining set (Granot [1994]) is the set of outcomes for which no justified objection exists. Here, in a justified objection the objector first watches how the target tries to act (if he has such an option), and then reacts by making a profit and ruining the target's attempt to maintain his share. In this paper we explore properties of the reactive bargaining set, set up the system of inequalities that defines it, and construct a dynamic system in the sense of Stearns' transfer scheme that leads the players to this set. We also extend the definition of the reactive bargaining set to NTU games in a way that keeps it nonempty. To shed light on its nature and its relative ease of computation, we compute the reactive bargaining set for games that played important role in the game theory literature.
引用
收藏
页码:75 / 95
页数:20
相关论文
共 50 条
  • [31] A bargaining set for monotonic simple games based on external and internal stability
    Emiliya Lazarova
    Peter Borm
    Maria Montero
    Hans Reijnierse
    TOP, 2011, 19 : 54 - 66
  • [32] EXTENSION OF THE PERLES-MASCHLER SOLUTION TO N-PERSON BARGAINING GAMES
    CALVO, E
    GUTIERREZ, E
    INTERNATIONAL JOURNAL OF GAME THEORY, 1994, 23 (04) : 325 - 346
  • [33] On a Structure of the Set of Differential Games Values
    Averboukh, Yurii
    ADVANCES IN DYNAMIC GAMES: THEORY, APPLICATIONS, AND NUMERICAL METHODS FOR DIFFERENTIAL AND STOCHASTIC GAMES: DEDICATED TO THE MEMORY OF ARIK A. MELIKYAN, 2011, 11 : 3 - 23
  • [34] Aubin core and bargaining set for almost-convex fuzzy cooperative games
    Chen, Gang
    Zhang, Qiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (03) : 1375 - 1380
  • [35] On the non-emptiness of the one-core and the bargaining set of committee games
    Kenfack, Joseph Armel Momo
    Tchantcho, Bertrand
    OPERATIONS RESEARCH LETTERS, 2014, 42 (02) : 113 - 118
  • [36] Alternating-offer bargaining with the global games information structure
    Tsoy, Anton
    THEORETICAL ECONOMICS, 2018, 13 (02): : 869 - 931
  • [37] Local Dynamics in Bargaining Networks via Random-Turn Games
    Celis, L. Elisa
    Devanur, Nikhil R.
    Peres, Yuval
    INTERNET AND NETWORK ECONOMICS, 2010, 6484 : 133 - +
  • [38] ON THE STRUCTURE OF THE SET OF PERFECT EQUILIBRIA IN BIMATRIX GAMES
    BORM, PEM
    JANSEN, MJM
    POTTERS, JAM
    TIJS, SH
    OR SPEKTRUM, 1993, 15 (01) : 17 - 20
  • [39] Existence of an Aumann-Maschler fuzzy bargaining set and fuzzy kernels in TU fuzzy games
    Liu, Jiuqiang
    Liu, Xiaodong
    Huang, Yan
    Yang, Wenbo
    FUZZY SETS AND SYSTEMS, 2018, 349 : 53 - 63
  • [40] Network structure, games, and agent dynamics
    Wilhite, Allen
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2014, 47 : 225 - 238