ADJUNCTION FOR VARIETIES WITH A ℂ* ACTION

被引:0
|
作者
ELEONORA A. ROMANO
JAROSŁAW A. WIŚNIEWSKI
机构
[1] University of Warsaw,Institute of Mathematics
[2] Università degli studi di Trento,Dipartimento di Matematica
来源
Transformation Groups | 2022年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complex projective manifold, L an ample line bundle on X, and assume that we have a ℂ* action on (X;L). We classify such triples (X; L;ℂ*) for which the closure of a general orbit of the ℂ* action is of degree ≤ 3 with respect to L and, in addition, the source and the sink of the action are isolated fixed points, and the ℂ* action on the normal bundle of every fixed point component has weights ±1. We treat this situation by relating it to the classical adjunction theory. As an application, we prove that contact Fano manifolds of dimension 11 and 13 are homogeneous if their group of automorphisms is reductive of rank ≥ 2.
引用
收藏
页码:1431 / 1473
页数:42
相关论文
共 50 条
  • [41] Płonka adjunction
    Vidal, J. Climent
    Llopez, E. Cosme
    LOGIC JOURNAL OF THE IGPL, 2024,
  • [42] UNIFORMLY RATIONAL VARIETIES WITH TORUS ACTION
    ALVARO LIENDO
    CHARLIE PETITJEAN
    Transformation Groups, 2019, 24 : 149 - 153
  • [43] A categorical action on quantized quiver varieties
    Ben Webster
    Mathematische Zeitschrift, 2019, 292 : 611 - 639
  • [44] UNIFORMLY RATIONAL VARIETIES WITH TORUS ACTION
    Liendo, Alvaro
    Petitjean, Charlie
    TRANSFORMATION GROUPS, 2019, 24 (01) : 149 - 153
  • [45] Quotients of toric varieties by the action of a subtorus
    A'Campo-Neuen, A
    Hausen, J
    TOHOKU MATHEMATICAL JOURNAL, 1999, 51 (01) : 1 - 12
  • [46] A categorical action on quantized quiver varieties
    Webster, Ben
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 611 - 639
  • [47] Varieties of the 'As If': Five Ways to Simulate an Action
    Seibt, Johanna
    SOCIABLE ROBOTS AND THE FUTURE OF SOCIAL RELATIONS, 2014, 273 : 97 - 104
  • [48] Adjunction identity to hypersemigroups
    Kehayopulu, Niovi
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 2834 - 2853
  • [49] Polyhedral adjunction theory
    Di Rocco, Sandra
    Haase, Christian
    Nill, Benjamin
    Paffenholz, Andreas
    ALGEBRA & NUMBER THEORY, 2013, 7 (10) : 2417 - 2446
  • [50] Identity in the Presence of Adjunction
    Stroinski, Mateusz
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (18) : 12711 - 12745