We show that for a connected Lie group G, the linearity of its radical \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\sqrt G}$$\end{document} (that is of its biggest connected normal solvable subgroup), is a necessary and sufficient condition for the boundedness of all Borel cohomology classes of G with integer coefficients, and that the linearity of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\sqrt G}$$\end{document} is also equivalent to a large-scale geometric property of G (involving distortion).