A geometric criterion for the boundedness of characteristic classes

被引:0
|
作者
Indira Chatterji
Guido Mislin
Christophe Pittet
Laurent Saloff-Coste
机构
[1] MAPMO Université d’Orléans,Department of Mathematics
[2] ETHZ,Department of Mathematics
[3] CMI Université d’Aix-Marseille I,undefined
[4] Cornell University,undefined
来源
Mathematische Annalen | 2011年 / 351卷
关键词
Primary 57T10; 55R40; Secondary 20F65; 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a connected Lie group G, the linearity of its radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt G}$$\end{document} (that is of its biggest connected normal solvable subgroup), is a necessary and sufficient condition for the boundedness of all Borel cohomology classes of G with integer coefficients, and that the linearity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt G}$$\end{document} is also equivalent to a large-scale geometric property of G (involving distortion).
引用
收藏
页码:541 / 569
页数:28
相关论文
共 50 条