Identifying influential nodes in complex networks based on Neighbours and edges

被引:1
|
作者
Zengzhen Shao
Shulei Liu
Yanyu Zhao
Yanxiu Liu
机构
[1] Shandong Women’s University,School of Data and Computer Science
[2] Shandong Normal University,School of Information Science and Engineering
关键词
Node ranking; Centrality measure; Second-degree neighbor; Importance of edges;
D O I
暂无
中图分类号
学科分类号
摘要
Identifying the influential nodes is one of the research focuses in network information mining. Many centrality measures used to evaluate influence abilities of nodes can’t balance between high accuracy and low time complexity. The NL centrality based on the neighbors and importance of edges is proposed which considers the second-degree neighbor’s impact on the influence of a node and utilizes the connectivity and unsubstitutability of edge to distinguish topological position of a node. In order to evaluate the accuracy of NL centrality, the SIR model is used to simulate the process of virus propagation in four real-world networks. Experiment results of monotonicity, validity and efficiency demonstrate that the NL centrality has a competitive performance in distinguishing the influence of nodes and it is suitable for large-scale networks because of the high efficiency in computation.
引用
收藏
页码:1528 / 1537
页数:9
相关论文
共 50 条
  • [21] Identifying influential nodes in complex networks via Transformer
    Chen, Leiyang
    Xi, Ying
    Dong, Liang
    Zhao, Manjun
    Li, Chenliang
    Liu, Xiao
    Cui, Xiaohui
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (05)
  • [22] A novel method of identifying influential nodes in complex networks based on random walks
    Zhang, Tingping
    Liang, Xinyu
    Journal of Information and Computational Science, 2014, 11 (18): : 6735 - 6740
  • [23] Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength
    Xi, Ying
    Cui, Xiaohui
    ENTROPY, 2023, 25 (05)
  • [24] A novel method for identifying influential nodes in complex networks based on multiple attributes
    Liu, Dong
    Nie, Hao
    Zhang, Baowen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28):
  • [25] Identifying and Ranking Influential Nodes in Complex Networks Based on Dynamic Node Strength
    Li, Xu
    Sun, Qiming
    ALGORITHMS, 2021, 14 (03)
  • [26] Identifying influential nodes in complex networks based on a spreading influence related centrality
    Chen, Xing
    Tan, Mian
    Zhao, Jing
    Yang, Tinghong
    Wu, Duzhi
    Zhao, Rulan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 536
  • [27] Identifying Influential Nodes in Complex Networks Based on Weighted Formal Concept Analysis
    Sun, Zejun
    Wang, Bin
    Sheng, Jinfang
    Hu, Yixiang
    Wang, Yihan
    Shao, Junming
    IEEE ACCESS, 2017, 5 : 3777 - 3789
  • [28] Identifying influential nodes in complex networks based on improved local gravity model
    Wu, Yongqing
    Tang, Tianchang
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):
  • [29] A novel method for identifying influential nodes in complex networks based on gravity model
    蒋沅
    杨松青
    严玉为
    童天驰
    代冀阳
    Chinese Physics B, 2022, 31 (05) : 908 - 918
  • [30] Identifying influential nodes in complex networks based on the inverse-square law
    Fei, Liguo
    Zhang, Qi
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 : 1044 - 1059