The Bargmann Transform and Windowed Fourier Localization

被引:0
|
作者
Min-Lin Lo
机构
[1] California State University,Department of Mathematics
[2] San Bernardino,undefined
来源
关键词
47B35; 42C40; 81R30; Berezin-Toeplitz operator; Bargmann isometry; windowed Fourier localization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the relationship between Gabor-Daubechies windowed Fourier localization operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ L^{w}_{\varphi } $$ \end{document} and Berezin-Toeplitz operators Tφ, using the Bargmann isometry β. For “window” w a finite linear combination of Hermite functions, and a very general class of functions φ, we prove an equivalence of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta L^{w}_{\varphi } \beta ^{{ - 1}} = C^{*} M_{\varphi } C = T_{{(1 + D)\varphi }} $$ \end{document} by obtaining the exact formulas for the operator C and the linear differential operator D.
引用
收藏
页码:397 / 412
页数:15
相关论文
共 50 条
  • [21] The Fourier and Hilbert transforms Under the Bargmann transform
    Dong, Xing-Tang
    Zhu, Kehe
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (04) : 517 - 531
  • [22] Fourier transform in multimode systems in the Bargmann representation
    Lei, C.
    Vourdas, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6193 - 6209
  • [23] Inversion formula for the windowed Fourier transform, II
    Xudong Sun
    Wenchang Sun
    Advances in Computational Mathematics, 2013, 38 : 21 - 34
  • [24] An improved windowed Fourier transform filter algorithm
    Zhao, Ran
    Li, Xinglong
    Sun, Ping
    OPTICS AND LASER TECHNOLOGY, 2015, 74 : 103 - 107
  • [25] Windowed discrete Fourier transform for shifting data
    Sherlock, BG
    SIGNAL PROCESSING, 1999, 74 (02) : 169 - 177
  • [26] An improved windowed Fourier transform for fringe demodulation
    Quan, C.
    Niu, H.
    Tay, C. J.
    OPTICS AND LASER TECHNOLOGY, 2010, 42 (01): : 126 - 131
  • [27] Windowed Fourier transform for fringe pattern analysis
    Kemao, Q
    APPLIED OPTICS, 2004, 43 (13) : 2695 - 2702
  • [28] Sharper uncertainty principles for the windowed Fourier transform
    Liu, Ming-Sheng
    Kou, Kit Ian
    Morais, Joao
    Dang, Pei
    JOURNAL OF MODERN OPTICS, 2015, 62 (01) : 46 - 55
  • [29] Shape Analysis with Anisotropic Windowed Fourier Transform
    Melzi, Simone
    Rodola, Emanuele
    Castellani, Umberto
    Bronstein, Michael M.
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 470 - 478
  • [30] On the windowed Fourier transform and wavelet transform of almost periodic functions
    Partington, JR
    Ünalmis, B
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) : 45 - 60