The Bargmann Transform and Windowed Fourier Localization

被引:0
|
作者
Min-Lin Lo
机构
[1] California State University,Department of Mathematics
[2] San Bernardino,undefined
来源
关键词
47B35; 42C40; 81R30; Berezin-Toeplitz operator; Bargmann isometry; windowed Fourier localization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the relationship between Gabor-Daubechies windowed Fourier localization operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ L^{w}_{\varphi } $$ \end{document} and Berezin-Toeplitz operators Tφ, using the Bargmann isometry β. For “window” w a finite linear combination of Hermite functions, and a very general class of functions φ, we prove an equivalence of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \beta L^{w}_{\varphi } \beta ^{{ - 1}} = C^{*} M_{\varphi } C = T_{{(1 + D)\varphi }} $$ \end{document} by obtaining the exact formulas for the operator C and the linear differential operator D.
引用
收藏
页码:397 / 412
页数:15
相关论文
共 50 条
  • [1] The Bargmann transform and windowed Fourier localization
    Lo, Min-Lin
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 57 (03) : 397 - 412
  • [2] LOCALIZATION OPERATORS RELATED TO α-WINDOWED FOURIER TRANSFORM
    Catana, Viorel
    Flondor, Ioana-Maria
    Scumpu, Mihaela-Gratiela
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (04): : 11 - 22
  • [3] Windowed Octonionic Fourier Transform
    Younis Ahmad Bhat
    Neyaz A. Sheikh
    Circuits, Systems, and Signal Processing, 2023, 42 : 2872 - 2896
  • [4] On the inverse windowed Fourier transform
    Rebollo-Neira, L
    Fernandez-Rubio, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2668 - 2671
  • [5] Adaptive windowed Fourier transform
    Djurovic, I
    Stankovic, L
    SIGNAL PROCESSING, 2003, 83 (01) : 91 - 100
  • [6] A WINDOWED DIGRAPH FOURIER TRANSFORM
    Shafipour, Rasoul
    Khodabakhsh, Ali
    Mateos, Gonzalo
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7525 - 7529
  • [7] α-Windowed Fourier transform (α-WFT)
    Catana, Viorel
    Flondor, Ioana-Maria
    Scumpu, Mihaela-Gratiela
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
  • [8] Windowed Octonionic Fourier Transform
    Bhat, Younis Ahmad
    Sheikh, Neyaz A.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 2872 - 2896
  • [9] A WINDOWED GRAPH FOURIER TRANSFORM
    Shuman, David I.
    Ricaud, Benjamin
    Vandergheynst, Pierre
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 133 - 136
  • [10] On the windowed Fourier transform as an interpolation of the Gabor transform
    Bastiaans, MJ
    SIGNAL ANALYSIS & PREDICTION I, 1997, : 265 - 268