Topological protection versus degree of entanglement of two-photon light in photonic topological insulators

被引:0
|
作者
Konrad Tschernig
Álvaro Jimenez-Galán
Demetrios N. Christodoulides
Misha Ivanov
Kurt Busch
Miguel A. Bandres
Armando Perez-Leija
机构
[1] Max-Born-Institut,CREOL, The College of Optics and Photonics
[2] Humboldt-Universität zu Berlin,undefined
[3] Institut für Physik,undefined
[4] AG Theoretische Optik & Photonik,undefined
[5] University of Central Florida,undefined
[6] Blackett Laboratory,undefined
[7] Imperial College London,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Topological insulators combine insulating properties in the bulk with scattering-free transport along edges, supporting dissipationless unidirectional energy and information flow even in the presence of defects and disorder. The feasibility of engineering quantum Hamiltonians with photonic tools, combined with the availability of entangled photons, raises the intriguing possibility of employing topologically protected entangled states in optical quantum computing and information processing. However, while two-photon states built as a product of two topologically protected single-photon states inherit full protection from their single-photon “parents”, a high degree of non-separability may lead to rapid deterioration of the two-photon states after propagation through disorder. In this work, we identify physical mechanisms which contribute to the vulnerability of entangled states in topological photonic lattices. Further, we show that in order to maximize entanglement without sacrificing topological protection, the joint spectral correlation map of two-photon states must fit inside a well-defined topological window of protection.
引用
收藏
相关论文
共 50 条
  • [21] Embedded Photonic Topological Insulators
    Bandres, Miguel A.
    Segev, Mordechai
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [22] Microwave Photonic Topological Insulators
    Dong, J. W.
    Chen, X. D.
    Chen, W. J.
    9TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2015), 2015, : 394 - 396
  • [23] Photonic Floquet Topological Insulators
    Rechtsman, M. C.
    Zeuner, J. M.
    Plotnik, Y.
    Lumer, Y.
    Segev, M.
    Szameit, A.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [24] Fractal photonic topological insulators
    Biesenthal, Tobias
    Maczewsky, Lukas J.
    Yang, Zhaoju
    Kremer, Mark
    Segev, Mordechai
    Szameit, Alexander
    Heinrich, Matthias
    SCIENCE, 2022, 376 (6597) : 1114 - +
  • [25] Hyperbolic photonic topological insulators
    Lei Huang
    Lu He
    Weixuan Zhang
    Huizhen Zhang
    Dongning Liu
    Xue Feng
    Fang Liu
    Kaiyu Cui
    Yidong Huang
    Wei Zhang
    Xiangdong Zhang
    Nature Communications, 15
  • [26] Photonic Floquet Topological Insulators
    Rechtsman, Mikael C.
    Zeuner, Julia M.
    Plotnik, Yonatan
    Lumer, Yaakov
    Podolsky, Daniel
    Dreisow, Felix
    Nolte, Stefan
    Segev, Mordechai
    Szameit, Alexander
    ACTIVE PHOTONIC MATERIALS V, 2013, 8808
  • [27] Photonic topological Anderson insulators
    Stutzer, Simon
    Plotnik, Yonatan
    Lumer, Yaakov
    Titum, Paraj
    Lindner, Netanel H.
    Segev, Mordechai
    Rechtsman, Mikael C.
    Szameit, Alexander
    NATURE, 2018, 560 (7719) : 461 - +
  • [28] Topological protection of highly entangled non-Gaussian two-photon states
    Tschernig, Konrad
    Lo Franco, Rosario
    Ivanov, Misha
    Bandres, Miguel A.
    Busch, Kurt
    Perez-Leija, Armando
    MATERIALS FOR QUANTUM TECHNOLOGY, 2021, 1 (03):
  • [29] Topological Protection of Light Propagation in Photonic Crystals
    Verhagen, Ewold
    Parappurath, Nikhil
    Arora, Sonakshi
    Bauer, Thomas
    Barczyk, Rene
    Alpeggiani, Filippo
    Kuipers, L.
    2020 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS (ECOC), 2020,
  • [30] Entanglement Spectrum of Topological Insulators and Superconductors
    Fidkowski, Lukasz
    PHYSICAL REVIEW LETTERS, 2010, 104 (13)