Three-dimensional histochemistry and imaging of human gingiva

被引:0
|
作者
Adriano Azaripour
Tonny Lagerweij
Christina Scharfbillig
Anna Elisabeth Jadczak
Britt van der Swaan
Manon Molenaar
Rens van der Waal
Karoline Kielbassa
Wikky Tigchelaar
Daisy I. Picavet
Ard Jonker
Esther M. L. Hendrikx
Vashendriya V. V. Hira
Mohammed Khurshed
Cornelis J. F. Van Noorden
机构
[1] University Medical Center of the Johannes Gutenberg University Mainz,Department of Operative Dentistry
[2] Academic Medical Center,Department of Medical Biology
[3] University of Amsterdam,Department of Neurosurgery, Neuro
[4] VU University Medical Center,oncology Research Group
[5] Cancer Center Amsterdam,Molecular Cell Biology and Immunology
[6] Room 3.36,undefined
[7] VU University Medical Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the present study, 3D histochemistry and imaging methodology is described for human gingiva to analyze its vascular network. Fifteen human gingiva samples without signs of inflammation were cleared using a mixture of 2-parts benzyl benzoate and 1-part benzyl alcohol (BABB), after being immunofluorescently stained for CD31, marker of endothelial cells to visualize blood vessels in combination with fluorescent DNA dyes. Samples were imaged in 3D with the use of confocal microscopy and light-sheet microscopy and image processing. BABB clearing caused limited tissue shrinkage 13 ± 7% as surface area and 24 ± 1% as volume. Fluorescence remained intact in BABB-cleared gingiva samples and light-sheet microscopy was an excellent tool to image gingivae whereas confocal microscopy was not. Histochemistry on cryostat sections of gingiva samples after 3D imaging validated structures visualized in 3D. Three-dimensional images showed the vascular network in the stroma of gingiva with one capillary loop in each stromal papilla invading into the epithelium. The capillary loops were tortuous with structural irregularities that were not apparent in 2D images. It is concluded that 3D histochemistry and imaging methodology described here is a promising novel approach to study structural aspects of human gingiva in health and disease.
引用
收藏
相关论文
共 50 条
  • [21] Three-dimensional ultrasound imaging
    Nelson, TR
    Pretorius, DH
    ULTRASOUND IN MEDICINE AND BIOLOGY, 1998, 24 (09): : 1243 - 1270
  • [22] Three-dimensional ultrasound imaging
    Gebhard, Ralf E.
    Eubanks, Treniece N.
    Meeks, Rachel
    CURRENT OPINION IN ANESTHESIOLOGY, 2015, 28 (05) : 583 - 587
  • [23] Three-dimensional ultrasound imaging
    Fenster, A
    Downey, DB
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 : 457 - 475
  • [24] Three-dimensional ultrasound imaging
    Fenster, A
    Downey, DB
    MEDICAL IMAGE ACQUISITION AND PROCESSING, 2001, 4549 : 1 - 10
  • [25] Three-Dimensional Kaleidoscopic Imaging
    Reshetouski, Ilya
    Manakov, Alkhazur
    Seidel, Hans-Peter
    Ihrke, Ivo
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 353 - 360
  • [26] Three-dimensional spinning imaging
    Hashimoto, S
    Hiramatsu, K
    Yuasa, Y
    RADIOLOGY, 1996, 201 : 643 - 643
  • [27] Three-dimensional craniofacial imaging
    Mah, J
    Hatcher, D
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2004, 126 (03) : 308 - 309
  • [28] Three-dimensional imaging of dislocations
    Rez, Peter
    Treacy, Michael M. J.
    NATURE, 2013, 503 (7476) : E1 - E1
  • [29] Three-dimensional imaging polarimetry
    Gleckler, AD
    Gelbart, A
    LASER RADAR TECHNOLOGY AND APPLICATIONS VI, 2001, 4377 : 175 - 185
  • [30] Three-dimensional ultrasound imaging
    Huang, CH
    Auner, GW
    Caulfield, HJ
    ACOUSTICS RESEARCH LETTERS ONLINE-ARLO, 2005, 6 (01): : 53 - 57