Predetector processing of lidar returns in atmospheric laser sensing

被引:3
|
作者
Tikhomirov A.A. [1 ]
机构
[1] Institute of Optical Monitoring, Tomsk Scientific Center of the Siberian Branch, Russian Academy of Sciences
关键词
Radiation; Lidar; Radiation Flux; Receive System; Polarization Analyzer;
D O I
10.1023/A:1015087914276
中图分类号
学科分类号
摘要
A range of devices used in predetector processing of a backscattered radiation flux in the laser receiving system is considered. These include a variety of spatial filters improving the signal-to-noise ratio and compressing the dynamic range by a controlled vignetting of backscattered radiation and special masks and rasters, including those for separating multiply scattered signals. Different configurations of polarization analyzers are proposed to determine the Stokes parameters in lidar returns. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:1115 / 1127
页数:12
相关论文
共 50 条
  • [11] SPECTRAL CORRELATION OF ATMOSPHERIC LIDAR RETURNS WITH RANGE-DEPENDENT BACKSCATTER
    RYE, BJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (12): : 2199 - 2207
  • [12] MULTIPLE FIELD-OF-VIEW LIDAR RETURNS FROM ATMOSPHERIC AEROSOLS
    HUTT, DL
    BISSONNETTE, LR
    DURAND, L
    APPLIED OPTICS, 1994, 33 (12): : 2338 - 2348
  • [13] ATMOSPHERIC PROPAGATION EFFECTS IN LASER RANGING AND LIDAR
    GARDNER, CS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (10) : 1409 - 1410
  • [14] Ultrashort laser applications in Lidar and atmospheric sciences
    Kasparian, J
    Bourayou, R
    Boutou, V
    Favre, C
    Méjean, G
    Mondelain, D
    Mysyrowicz, A
    Rodriguez, M
    Salmon, E
    Sauerbrey, R
    Wille, H
    Wolf, JP
    Wöste, L
    Yu, J
    Klingbeil, L
    Rethmeier, K
    Kalkner, W
    Hartzes, A
    Lehman, H
    Eislöffel, J
    Stecklum, B
    Winkler, J
    Laux, U
    Hönger, S
    Pan, Y
    Chang, RK
    Hill, SC
    12TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2003, 5226 : 238 - 248
  • [15] Laser sensing of atmospheric turbulence
    Gimmestad, GG
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS V, 2003, 4884 : 104 - 109
  • [16] Advances in atmospheric, hydrographic and vegetation remote sensing with lidar
    Devara P.C.S.
    Raj P.E.
    Pandithurai G.
    Maheskumar R.S.
    Dani K.K.
    Journal of the Indian Society of Remote Sensing, 1997, 25 (4) : 225 - 238
  • [17] Femtosecond LIDAR:: new perspectives of atmospheric remote sensing
    Rodriguez, M
    Bourayou, R
    Kasparian, J
    Méjean, G
    Mysyrowicz, A
    Salmon, E
    Sauerbrey, R
    Wille, H
    Wöste, L
    Wolf, JP
    Yu, J
    Zimmer, W
    LASER APPLICATIONS IN MEDICINE, BIOLOGY AND ENVIRONMENTAL SCIENCE, 2003, 5149 : 135 - 146
  • [18] Applications of the Scheimpflug Lidar Technique in Atmospheric Remote Sensing
    Mei, Liang
    Kong, Zheng
    Ma, Teng
    Li, Limei
    Liu, Zhi
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2198 - 2203
  • [19] Adaptive filter solution for processing lidar returns: optical parameter estimation
    Rocadenbosch, F
    Vazquez, G
    Comeron, A
    APPLIED OPTICS, 1998, 37 (30) : 7019 - 7034
  • [20] Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing
    Mei, Liang
    Ma, Teng
    Kong, Zheng
    Gong, Zhengfeng
    Li, Hui
    APPLIED OPTICS, 2019, 58 (32) : 8981 - 8992