Convergent Flows of Molten Polymers Modeled by Generalized Second-Grade Fluids of Power-Law Type

被引:0
|
作者
E. Walicki
A. Walicka
机构
[1] Technical University of Zielona Góra,Department of Mechanics
来源
Mechanics of Composite Materials | 2002年 / 38卷
关键词
viscous fluids; convergent flow; nonlinear model; pressure drop;
D O I
暂无
中图分类号
学科分类号
摘要
The molding processes of polymer melts involve geometrically complex dies. Such dies are usually tapered or streamlined to achieve a maximum output rate under conditions of laminar flow. The model of a generalized second-grade fluid of power-law type is used and the results obtained are illustrated by examples of convergent flows in conical and wedge-shaped dies.
引用
收藏
页码:89 / 94
页数:5
相关论文
共 50 条
  • [21] FALKNER-SKAN FLOWS OF POWER-LAW FLUIDS
    HSU, C
    COTHERN, JH
    MECHANICAL ENGINEERING, 1971, 93 (09) : 52 - &
  • [22] Shear flows of a new class of power-law fluids
    Le Roux, Christiaan
    Rajagopal, Kumbakonam R.
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 153 - 177
  • [23] Simulation of sudden expansion flows for power-law fluids
    Manica, R
    De Bortoli, AL
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 121 (01) : 35 - 40
  • [24] Shear flows of a new class of power-law fluids
    Christiaan Le Roux
    Kumbakonam R. Rajagopal
    Applications of Mathematics, 2013, 58 : 153 - 177
  • [25] Global analysis for the fluids of a power-law type
    Málek, J
    DIFFERENTIAL EQUATIONS AND NONLINEAR MECHANICS, 2001, 528 : 213 - 233
  • [26] On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index
    Bulicek, Miroslav
    Pustejovska, Petra
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 157 - 166
  • [27] SIMILARITY SOLUTION FOR CONE AND DISK FLOWS OF POWER-LAW FLUIDS
    YANG, WJ
    YEH, HC
    AIAA JOURNAL, 1967, 5 (08) : 1522 - &
  • [28] Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels
    Zhao, Cunlu
    Zhang, Wenyao
    Yang, Chun
    MICROMACHINES, 2017, 8 (02)
  • [29] Weak Solvability of Equations Modeling Steady-State Flows of Second-Grade Fluids
    E. S. Baranovskii
    Differential Equations, 2020, 56 : 1318 - 1323
  • [30] STEADY FLOWS OF SECOND-GRADE FLUIDS SUBJECT TO STICK-SLIP BOUNDARY CONDITIONS
    Baranovskii, E. S.
    Artemov, M. A.
    ENGINEERING MECHANICS 2017, 2017, : 110 - 113