Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval

被引:0
|
作者
Liang Xie
Lei Zhu
Guoqi Chen
机构
[1] Wuhan University of Technology,Department of Mathematics
[2] Singapore Management University,School of Information Systems
[3] Wuhan University of Technology,School of Automation
来源
关键词
Cross-modal hashing; Multi-graph learning; Cross-media retrieval;
D O I
暂无
中图分类号
学科分类号
摘要
With the advance of internet and multimedia technologies, large-scale multi-modal representation techniques such as cross-modal hashing, are increasingly demanded for multimedia retrieval. In cross-modal hashing, three essential problems should be seriously considered. The first is that effective cross-modal relationship should be learned from training data with scarce label information. The second is that appropriate weights should be assigned for different modalities to reflect their importance. The last is the scalability of training process which is usually ignored by previous methods. In this paper, we propose Multi-graph Cross-modal Hashing (MGCMH) by comprehensively considering these three points. MGCMH is unsupervised method which integrates multi-graph learning and hash function learning into a joint framework, to learn unified hash space for all modalities. In MGCMH, different modalities are assigned with proper weights for the generation of multi-graph and hash codes respectively. As a result, more precise cross-modal relationship can be preserved in the hash space. Then Nyström approximation approach is leveraged to efficiently construct the graphs. Finally an alternating learning algorithm is proposed to jointly optimize the modality weights, hash codes and functions. Experiments conducted on two real-world multi-modal datasets demonstrate the effectiveness of our method, in comparison with several representative cross-modal hashing methods.
引用
收藏
页码:9185 / 9204
页数:19
相关论文
共 50 条
  • [11] Online Adaptive Supervised Hashing for Large-Scale Cross-Modal Retrieval
    Su, Ruoqi
    Wang, Di
    Huang, Zhen
    Liu, Yuan
    An, Yaqiang
    IEEE ACCESS, 2020, 8 : 206360 - 206370
  • [12] Efficient discrete supervised hashing for large-scale cross-modal retrieval
    Yao, Tao
    Han, Yaru
    Wang, Ruxin
    Kong, Xiangwei
    Yan, Lianshan
    Fu, Haiyan
    Tian, Qi
    NEUROCOMPUTING, 2020, 385 (385) : 358 - 367
  • [13] SCALABLE DISCRIMINATIVE DISCRETE HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Qin, Jianyang
    Fei, Lunke
    Zhu, Jian
    Wen, Jie
    Tian, Chunwei
    Wu, Shuai
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4330 - 4334
  • [14] Label guided correlation hashing for large-scale cross-modal retrieval
    Guohua Dong
    Xiang Zhang
    Long Lan
    Shiwei Wang
    Zhigang Luo
    Multimedia Tools and Applications, 2019, 78 : 30895 - 30922
  • [15] Fast Semantic Preserving Hashing for Large-Scale Cross-Modal Retrieval
    Wang, Xingzhi
    Liu, Xin
    Peng, Shujuan
    Cheung, Yiu-ming
    Hu, Zhikai
    Wang, Nannan
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1348 - 1353
  • [16] Multiple Information Embedded Hashing for Large-Scale Cross-Modal Retrieval
    Wang, Yongxin
    Zhan, Yu-Wei
    Chen, Zhen-Duo
    Luo, Xin
    Xu, Xin-Shun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 5118 - 5131
  • [17] Label guided correlation hashing for large-scale cross-modal retrieval
    Dong, Guohua
    Zhang, Xiang
    Lan, Long
    Wang, Shiwei
    Luo, Zhigang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (21) : 30895 - 30922
  • [18] Unsupervised Deep Hashing via Binary Latent Factor Models for Large-scale Cross-modal Retrieval
    Wu, Gengshen
    Lin, Zijia
    Han, Jungong
    Liu, Li
    Ding, Guiguang
    Zhang, Baochang
    Shen, Jialie
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2854 - 2860
  • [19] Joint-modal Distribution-based Similarity Hashing for Large-scale Unsupervised Deep Cross-modal Retrieval
    Liu, Song
    Qian, Shengsheng
    Guan, Yang
    Zhan, Jiawei
    Ying, Long
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1379 - 1388
  • [20] Kernelized Cross-Modal Hashing for Multimedia Retrieval
    Tan, Shoubiao
    Hu, Lingyu
    Wang-Xu, Anqi
    Tang, Jun
    Jia, Zhaohong
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 1224 - 1228