Width Deviation of Convex Polygons

被引:0
|
作者
Shigeki Akiyama
Teturo Kamae
机构
[1] University of Tsukuba,Institute of Mathematics
[2] Osaka Metropolitan University,Advanced Mathematical Institute
来源
关键词
Width distribution; Convex polygon; Minimum deviation rate; Reinhalt polygon; 52B60; 52B12; 52B05; 52A40; 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the width XT(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_T(\omega )$$\end{document} of a convex n-gon T in the plane along the random direction ω∈R/2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \in {\mathbb {R}}/2\pi {\mathbb {Z}}$$\end{document} and study its deviation rate: δ(XT)=E(XT2)-E(XT)2E(XT).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \delta (X_T)=\frac{\sqrt{\mathbb {E}(X^2_T)-\mathbb {E}(X_T)^2}}{\mathbb {E}(X_T)}. \end{aligned}$$\end{document}We prove that the maximum is attained if and only if T degenerates to a 2-gon. Let n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} be an integer which is not a power of 2. We show that π4ntan(π/(2n))+π28n2sin2(π/(2n))-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sqrt{\frac{\pi }{4n\tan \hspace{0.83328pt}(\pi /(2n))}+\frac{\pi ^2}{8n^2\sin ^2(\pi /(2n))}-1} \end{aligned}$$\end{document}is the minimum of δ(XT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (X_T)$$\end{document} among all n-gons and determine completely the shapes of T’s which attain this minimum. They are characterized as polygonal approximations of equi-Reuleaux bodies, found and studied by Reinhardt (Jahresber. Deutsch. Math. Verein. 31, 251–270 (1922)). In particular, if n is odd, then the regular n-gon is one of the minimum shapes. When n is even, we see that regular n-gon is far from optimal. We also observe an unexpected property of the deviation rate on the truncation of the regular triangle.
引用
收藏
页码:1403 / 1428
页数:25
相关论文
共 50 条
  • [21] On a partition into convex polygons
    Urabe, M
    DISCRETE APPLIED MATHEMATICS, 1996, 64 (02) : 179 - 191
  • [22] CONVEX LATTICE POLYGONS
    WILLS, JM
    COMMENTARII MATHEMATICI HELVETICI, 1973, 48 (02) : 188 - 194
  • [23] Reconfiguring convex polygons
    Aichholzer, O
    Demaine, ED
    Erickson, J
    Hurtado, F
    Overmars, M
    Soss, M
    Toussaint, GT
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2): : 85 - 95
  • [24] THE MORPHOLOGY OF CONVEX POLYGONS
    OLARIU, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (07) : 59 - 68
  • [25] FAST CONVEX POLYGONS
    ABRASH, M
    DR DOBBS JOURNAL, 1991, 16 (03): : 129 - &
  • [26] APPROXIMATION OF CONVEX POLYGONS
    ALT, H
    BLOMER, J
    GODAU, M
    WAGENER, H
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 703 - 716
  • [27] On a partition into convex polygons
    Discrete Appl Math, 2 (179):
  • [28] Convex polygons as carriers
    Shephard, G. C.
    MATHEMATICAL GAZETTE, 2016, 100 (547): : 93 - 102
  • [29] On the equipartition of plane convex bodies and convex polygons
    Guardia, Roser
    Hurtado, Ferran
    JOURNAL OF GEOMETRY, 2005, 83 (1-2) : 32 - 45
  • [30] EMPTY CONVEX POLYGONS IN ALMOST CONVEX SETS
    Valtr, Pavel
    Lippner, Gabor
    Karolyi, Gyula
    PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (02) : 121 - 127