EmNet: a deep integrated convolutional neural network for facial emotion recognition in the wild

被引:0
|
作者
Sumeet Saurav
Ravi Saini
Sanjay Singh
机构
[1] Academy of Scientific and Innovative Research,
[2] CSIR-Central Electronics Engineering Research Institute,undefined
来源
Applied Intelligence | 2021年 / 51卷
关键词
Deep convolutional neural network; Embedded implementation; CNN optimization; Facial emotion recognition;
D O I
暂无
中图分类号
学科分类号
摘要
In the past decade, facial emotion recognition (FER) research saw tremendous progress, which led to the development of novel convolutional neural network (CNN) architectures for automatic recognition of facial emotions in static images. These networks, though, have achieved good recognition accuracy, they incur high computational costs and memory utilization. These issues restrict their deployment in real-world applications, which demands the FER systems to run on resource-constrained embedded devices in real-time. Thus, to alleviate these issues and to develop a robust and efficient method for automatic recognition of facial emotions in the wild with real-time performance, this paper presents a novel deep integrated CNN model, named EmNet (Emotion Network). The EmNet model consists of two structurally similar DCNN models and their integrated variant, jointly-optimized using a joint-optimization technique. For a given facial image, the EmNet gives three predictions, which are fused using two fusion schemes, namely average fusion and weighted maximum fusion, to obtain the final decision. To test the efficiency of the proposed FER pipeline on a resource-constrained embedded platform, we optimized the EmNet model and the face detector using TensorRT SDK and deploy the complete FER pipeline on the Nvidia Xavier device. Our proposed EmNet model with 4.80M parameters and 19.3MB model size attains notable improvement over the current state-of-the-art in terms of accuracy with multi-fold improvement in computational efficiency.
引用
收藏
页码:5543 / 5570
页数:27
相关论文
共 50 条
  • [21] Modified Convolutional Neural Network Architecture Analysis for Facial Emotion Recognition
    Verma, Abhishek
    Singh, Piyush
    Alex, John Sahaya Rani
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 169 - 173
  • [22] Recognition of emotion in music based on deep convolutional neural network
    Rajib Sarkar
    Sombuddha Choudhury
    Saikat Dutta
    Aneek Roy
    Sanjoy Kumar Saha
    Multimedia Tools and Applications, 2020, 79 : 765 - 783
  • [23] Recognition of emotion in music based on deep convolutional neural network
    Sarkar, Rajib
    Choudhury, Sombuddha
    Dutta, Saikat
    Roy, Aneek
    Saha, Sanjoy Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (1-2) : 765 - 783
  • [24] Fly facial recognition based on deep convolutional neural network
    Chen Y.-T.
    Chen W.-N.
    Zhang X.-Z.
    Li Y.-Y.
    Wang J.-S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (07): : 1558 - 1567
  • [25] Facial expression recognition based on deep convolutional neural network
    Wang, Kejun
    Chen, Jing
    Zhang, Xinyi
    Sun, Liying
    2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER), 2018, : 629 - 634
  • [26] Facial Expression Recognition In The Wild Using Bidirectional Convolutional Neural Network
    Liu, Jiaxu
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 26 - 30
  • [27] Three convolutional neural network models for facial expression recognition in the wild
    Shao, Jie
    Qian, Yongsheng
    NEUROCOMPUTING, 2019, 355 : 82 - 92
  • [28] Deep Convolutional Neural Network for Facial Expression Recognition using Facial Parts
    Nwosu, Lucy
    Wang, Hui
    Lu, Jiang
    Unwala, Ishaq
    Yang, Xiaokun
    Zhang, Ting
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 1318 - 1321
  • [29] Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network
    Minaee, Shervin
    Minaei, Mehdi
    Abdolrashidi, Amirali
    SENSORS, 2021, 21 (09)
  • [30] Faster Region Convolutional Neural Network (FRCNN) Based Facial Emotion Recognition
    Angel, J. Sheril
    Andrushia, A. Diana
    Neebha, T. Mary
    Accouche, Oussama
    Saker, Louai
    Anand, N.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 2427 - 2448