Geometrically exact planar Euler-Bernoulli beam and time integration procedure for multibody dynamics

被引:1
|
作者
Sansour C. [1 ]
Nguyen T.L. [1 ]
Hjiaj M. [1 ]
Chhang S. [1 ]
机构
[1] INSA Rennes, LGCGM/Structural Engineering Research Group, 20 avenue des Buttes de Coësmes, CS 70839, Rennes Cedex 7
关键词
Energy-momentum method; Euler-Bernoulli beam; Geometrically exact beam theory; Multi-body dynamics;
D O I
10.1186/s40323-020-00166-1
中图分类号
学科分类号
摘要
A new formulation of geometrically exact planar Euler-Bernoulli beam in multi-body dynamics is proposed. For many applications, the use of the Euler-Bernoulli model is sufficient and has the advantage of being a nodal displacement-only formulation avoiding the integration of rotational degrees of freedom. In this paper, an energy momentum method is proposed for the nonlinear in-plane dynamics of flexible multi-body systems, including the effects of revolute joints with or without torsional springs. Large rotational angles of the joints are accurately calculated. Several numerical examples demonstrate the accuracy and the capabilities of the new formulation. © 2020, The Author(s).
引用
收藏
相关论文
共 50 条
  • [31] Vibration control of a rotating Euler-Bernoulli beam
    Diken, H
    JOURNAL OF SOUND AND VIBRATION, 2000, 232 (03) : 541 - 551
  • [32] Optimal vibration quenching for an Euler-Bernoulli beam
    Sloss, JM
    Bruch, JC
    Kao, CC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (02) : 306 - 331
  • [33] Solvability of the clamped Euler-Bernoulli beam equation
    Baysal, Onur
    Hasanov, Alemdar
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 85 - 90
  • [34] A new recursive geometrically exact formulation for three-dimensional Euler-Bernoulli beams with large deformations
    Chen, Zheng
    Ren, Hui
    Fan, Wei
    Zhou, Ping
    NONLINEAR DYNAMICS, 2025, 113 (05) : 4671 - 4701
  • [35] Matching Boundary Conditions for the Euler-Bernoulli Beam
    Feng, Yaoqi
    Wang, Xianming
    SHOCK AND VIBRATION, 2021, 2021
  • [36] Control of a viscoelastic translational Euler-Bernoulli beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 237 - 254
  • [37] Boundary Value Problems for Euler-Bernoulli Planar Elastica. A Solution Construction Procedure
    Josu J. Arroyo
    Óscar J. Garay
    Álvaro Pámpano
    Journal of Elasticity, 2020, 139 : 359 - 388
  • [38] Stabilization of a viscoelastic rotating Euler-Bernoulli beam
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2939 - 2960
  • [39] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Gorain, GC
    Bose, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 411 - 416
  • [40] PARAMETER-ESTIMATION FOR THE EULER-BERNOULLI BEAM
    KUNISCH, K
    GRAIF, E
    MATEMATICA APLICADA E COMPUTACIONAL, 1985, 4 (02): : 95 - 124