Decoupling inequalities and interlacement percolation on G×ℤ

被引:0
|
作者
Alain-Sol Sznitman
机构
[1] ETH-Zentrum,Departement Mathematik
来源
Inventiones mathematicae | 2012年 / 187卷
关键词
Random Walk; Weighted Graph; Poisson Point Process; Sierpinski Gasket; Percolative Property;
D O I
暂无
中图分类号
学科分类号
摘要
We study the percolative properties of random interlacements on G×ℤ, where G is a weighted graph satisfying certain sub-Gaussian estimates attached to the parameters α>1 and 2≤β≤α+1, describing the respective polynomial growths of the volume on G and of the time needed by the walk on G to move to a distance. We develop decoupling inequalities, which are a key tool in showing that the critical level u∗ for the percolation of the vacant set of random interlacements is always finite in our set-up, and that it is positive when α≥1+β/2. We also obtain several stretched exponential controls both in the percolative and non-percolative phases of the model. Even in the case where G=ℤd, d≥2, several of these results are new.
引用
收藏
页码:645 / 706
页数:61
相关论文
共 50 条
  • [21] DECOUPLING INEQUALITIES FOR QUADRATIC FORMS
    Guo, Shaoming
    Oh, Changkeun
    Zhang, Ruixiang
    Zorin-Kranich, Pavel
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (02) : 387 - 445
  • [22] DECOUPLING INEQUALITIES FOR POLYNOMIAL CHAOS
    KWAPIEN, S
    ANNALS OF PROBABILITY, 1987, 15 (03): : 1062 - 1071
  • [23] Percolation on Infinite Graphs and Isoperimetric Inequalities
    Rogério G. Alves
    Aldo Procacci
    Remy Sanchis
    Journal of Statistical Physics, 2012, 149 : 831 - 845
  • [24] Percolation on finite graphs and isoperimetric inequalities
    Alon, N
    Benjamini, I
    Stacey, A
    ANNALS OF PROBABILITY, 2004, 32 (3A): : 1727 - 1745
  • [25] SOME CRITICAL EXPONENT INEQUALITIES FOR PERCOLATION
    NEWMAN, CM
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (3-4) : 359 - 368
  • [26] Percolation on Infinite Graphs and Isoperimetric Inequalities
    Alves, Rogerio G.
    Procacci, Aldo
    Sanchis, Remy
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (05) : 831 - 845
  • [27] PERCOLATION - GRIMMETT,G
    WIERMAN, J
    SCIENCE, 1990, 247 (4940) : 351 - 351
  • [28] Strict Inequalities of Critical Values in Continuum Percolation
    Massimo Franceschetti
    Mathew D. Penrose
    Tom Rosoman
    Journal of Statistical Physics, 2011, 142 : 460 - 486
  • [29] Hyperscaling Inequalities for the Contact Process and Oriented Percolation
    Akira Sakai
    Journal of Statistical Physics, 2002, 106 : 201 - 211
  • [30] CLUSTER AND PERCOLATION INEQUALITIES FOR LATTICE SYSTEMS WITH INTERACTIONS
    LEBOWITZ, JL
    PENROSE, O
    JOURNAL OF STATISTICAL PHYSICS, 1977, 16 (04) : 321 - 337