Mean Curvature Flow of Singular Riemannian Foliations

被引:0
|
作者
Marcos M. Alexandrino
Marco Radeschi
机构
[1] Instituto de Matemática e Estatística,Mathematisches Institut
[2] Universidade de São Paulo,undefined
[3] WWU Münster,undefined
来源
关键词
Mean curvature flow; Isometric action; Singular Riemannian foliation; Isoparametric foliation; 53C12; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Given a singular Riemannian foliation on a compact Riemannian manifold, we study the mean curvature flow equation with a regular leaf as initial datum. We prove that if the leaves are compact and the mean curvature vector field is basic, then any finite time singularity is a singular leaf, and the singularity is of type I. This generalizes previous results of Liu–Terng and Koike. In particular, our results can be applied to study the orbits of an isometric action by a compact Lie group.
引用
收藏
页码:2204 / 2220
页数:16
相关论文
共 50 条