Mean Curvature Flow of Singular Riemannian Foliations

被引:0
|
作者
Marcos M. Alexandrino
Marco Radeschi
机构
[1] Instituto de Matemática e Estatística,Mathematisches Institut
[2] Universidade de São Paulo,undefined
[3] WWU Münster,undefined
来源
关键词
Mean curvature flow; Isometric action; Singular Riemannian foliation; Isoparametric foliation; 53C12; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
Given a singular Riemannian foliation on a compact Riemannian manifold, we study the mean curvature flow equation with a regular leaf as initial datum. We prove that if the leaves are compact and the mean curvature vector field is basic, then any finite time singularity is a singular leaf, and the singularity is of type I. This generalizes previous results of Liu–Terng and Koike. In particular, our results can be applied to study the orbits of an isometric action by a compact Lie group.
引用
收藏
页码:2204 / 2220
页数:16
相关论文
共 50 条
  • [1] Mean Curvature Flow of Singular Riemannian Foliations
    Alexandrino, Marcos M.
    Radeschi, Marco
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 2204 - 2220
  • [2] On mean curvature flow of singular Riemannian foliations: Noncompact cases
    Alexandrino, Marcos M.
    Cavenaghi, Leonardo F.
    Goncalves, Icaro
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 72
  • [3] Mean curvature of Riemannian foliations
    March, P
    MinOo, M
    Ruh, EA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01): : 95 - 105
  • [4] Core reduction for singular Riemannian foliations and applications to positive curvature
    Diego Corro
    Adam Moreno
    Annals of Global Analysis and Geometry, 2022, 62 : 617 - 634
  • [5] Core reduction for singular Riemannian foliations and applications to positive curvature
    Corro, Diego
    Moreno, Adam
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (03) : 617 - 634
  • [6] Point leaf maximal singular Riemannian foliations in positive curvature
    Moreno, Adam
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 66 : 181 - 195
  • [7] Riemannian mean curvature flow
    Estépar, RSJ
    Haker, S
    Westin, CF
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 613 - 620
  • [8] A Note on Constant Mean Curvature Foliations of Noncompact Riemannian Manifolds
    Ilias, S.
    Nelli, B.
    Soret, M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2022, 2022
  • [9] Singular Riemannian foliations and applications to positive and non-negative curvature
    Galaz-Garcia, Fernando
    Radeschi, Marco
    JOURNAL OF TOPOLOGY, 2015, 8 (03) : 603 - 620
  • [10] Mean curvature flow and Riemannian submersions
    Pipoli, Giuseppe
    GEOMETRIAE DEDICATA, 2016, 184 (01) : 67 - 81