Commutative Objects, Central Morphisms and Subtractors in Subtractive Categories

被引:0
|
作者
Vaino Tuhafeni Shaumbwa
机构
[1] University of Namibia,Department of Computing, Mathematical and Statistical Sciences
[2] Stellenbosch University,Department of Mathematical Sciences
来源
Applied Categorical Structures | 2023年 / 31卷
关键词
Abelian object; Commutative object; Central morphism; Internal subtraction structure; Subtractor; Subtractive category; 18C40; 08C05; 18E08; 18E13;
D O I
暂无
中图分类号
学科分类号
摘要
We give some characterizations of commutative objects in a subtractive category and central morphisms in a regular subtractive category. In particular, we show that commutative objects, i.e., internal unitary magmas, are the same as internal abelian groups in a subtractive category and that analogously, centrality has an alternative description in terms of so-called “subtractors” in a regular subtractive category.
引用
收藏
相关论文
共 50 条
  • [21] ON EXPONENTIAL MORPHISMS OVER COMMUTATIVE RINGS
    El Kahoui, M'Hammed
    Hammi, Aziza
    COLLOQUIUM MATHEMATICUM, 2022, 169 (02) : 333 - 340
  • [22] ON EXPONENTIAL MORPHISMS OVER COMMUTATIVE RINGS
    El Kahoui, M'hammed
    Hammi, Aziza
    COLLOQUIUM MATHEMATICUM, 2022, : 333 - 340
  • [23] Subtractive Categories and Extended Subtractions
    Dominique Bourn
    Zurab Janelidze
    Applied Categorical Structures, 2009, 17 : 317 - 343
  • [24] Subtractive Categories and Extended Subtractions
    Bourn, Dominique
    Janelidze, Zurab
    APPLIED CATEGORICAL STRUCTURES, 2009, 17 (04) : 317 - 343
  • [25] Locally commutative categories
    Chattopadhyay, A
    Thérien, D
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 984 - 995
  • [26] On the commutative algebra of categories
    Berman, John D.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (05): : 2963 - 3012
  • [27] Categories of projective geometries with morphisms and homomorphisms
    Bhattarai, HN
    GEOMETRIAE DEDICATA, 1999, 78 (02) : 111 - 120
  • [28] STACKS OF ANN-CATEGORIES AND THEIR MORPHISMS
    Aldrovandi, Ettore
    THEORY AND APPLICATIONS OF CATEGORIES, 2015, 30 : 1256 - 1286
  • [29] An algebraic approach to categories of partial morphisms
    Stefani, ST
    JOURNAL OF SYMBOLIC LOGIC, 2002, 67 (01) : 117 - 129
  • [30] A classification of geometric morphisms and localizations for presheaf categories and algebraic categories
    Centazzo, Claudia
    Vitale, Enrico M.
    JOURNAL OF ALGEBRA, 2006, 303 (01) : 77 - 96