Bounded symmetric domains and polynomial convexity

被引:0
|
作者
Wilhelm Kaup
机构
[1] Universität Tübingen,Mathematisches Institut
来源
manuscripta mathematica | 2004年 / 114卷
关键词
Vector Space; Compact Subset; Linear Group; Complex Vector; Convex Domain;
D O I
暂无
中图分类号
学科分类号
摘要
For every bounded symmetric domain D=G/K in a complex vector space E of finite dimension we determine all polynomially convex compact subsets of E that are invariant under the compact linear group K, where D is realized in the standard way as circular convex domain in E.
引用
收藏
页码:391 / 398
页数:7
相关论文
共 50 条
  • [11] Subvarieties of quotients of bounded symmetric domains
    Cadorel, Benoit
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 419 - 456
  • [12] AN EXTREMAL PROBLEM ON BOUNDED SYMMETRIC DOMAINS
    KUBOTA, Y
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1983, 15 (MAR) : 126 - 130
  • [13] Quantum groups and bounded symmetric domains
    Sinel'shchikov, SD
    Vaksman, L
    Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 323 - 330
  • [14] Angular derivatives on bounded symmetric domains
    Mackey, M
    Mellon, P
    ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) : 291 - 315
  • [15] Bloch constants of bounded symmetric domains
    Zhang, GK
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (07) : 2941 - 2949
  • [16] Sobolev spaces on bounded symmetric domains
    Englis, Miroslav
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (12) : 1712 - 1726
  • [17] Angular derivatives on bounded symmetric domains
    M. Mackey
    P. Mellon
    Israel Journal of Mathematics, 2003, 138 : 291 - 315
  • [18] Bloch functions on bounded symmetric domains
    Chu, Cho-Ho
    Hamada, Hidetaka
    Honda, Tatsuhiro
    Kohr, Gabriela
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (06) : 2412 - 2441
  • [19] Extensions of real bounded symmetric domains
    Olafsson, Gestur
    Stanton, Robert J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [20] Commutators on bounded symmetric domains in Cn
    Miao, J
    TRENDS IN BANACH SPACES & OPERATOR THEORY, 2003, 321 : 181 - 195