Principal Eigenvalues for Generalised Indefinite Robin Problems

被引:0
|
作者
Daniel Daners
机构
[1] University of Sydney,School of Mathematics and Statistics
来源
Potential Analysis | 2013年 / 38卷
关键词
Elliptic boundary value problem; Principal Eigenvalue; Generalised Robin problem; Indefinite Eigenvalue problem; 35J25; 35P15; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the principal eigenvalue of generalised Robin boundary value problems on non-smooth domains, where the zero order coefficient of the boundary operator is negative or changes sign. We provide conditions so that the related eigenvalue problem has a principal eigenvalue. We work with the framework involving measure data on the boundary due to Arendt and Warma (Potential Anal 19:341–363, 2003). Examples of simple domains with cusps are used to illustrate all possible phenomena.
引用
收藏
页码:1047 / 1069
页数:22
相关论文
共 50 条
  • [41] Superlinear, Noncoercive Asymmetric Robin Problems with Indefinite, Unbounded Potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (03): : 253 - 281
  • [42] Robin problems with indefinite, unbounded potential and reaction of arbitrary growth
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Revista Matemática Complutense, 2016, 29 : 91 - 126
  • [43] Robin problems with indefinite, unbounded potential and reaction of arbitrary growth
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (01): : 91 - 126
  • [44] ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL, RESONANT AT -∞, SUPERLINEAR AT plus ∞
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (02) : 261 - 286
  • [45] Nonlinear, Nonhomogeneous Robin Problems with Indefinite Potential and General Reaction
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Applied Mathematics & Optimization, 2020, 81 : 823 - 857
  • [46] PRINCIPAL EIGENVALUES FOR SYSTEMS OF SCHRODINGER EQUATIONS DEFINED IN THE WHOLE SPACE WITH INDEFINITE WEIGHTS
    Cardoulis, Laure
    MATHEMATICA SLOVACA, 2015, 65 (05) : 1079 - 1094
  • [47] PRINCIPAL EIGENVALUES OF ELLIPTIC PROBLEMS WITH LARGE POTENTIAL
    Godoy, Tomas
    Gossez, Jean-Pierre
    Paczka, Sofia
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (9-10) : 1029 - 1038
  • [48] NONREAL EIGENVALUES OF SINGULAR INDEFINITE STURM-LIOUVILLE PROBLEMS
    Han, Xiaoxue
    Sun, Fu
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (05) : 1345 - 1357
  • [49] POSITIVE AND NODAL SOLUTIONS FOR PARAMETRIC NONLINEAR ROBIN PROBLEMS WITH INDEFINITE POTENTIAL
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 6133 - 6166
  • [50] Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    POSITIVITY, 2020, 24 (02) : 339 - 367