Some conditions on real hypersurfaces in quaternionic projective spaces in terms of lie derivatives

被引:0
|
作者
De Dios Pérez J. [1 ]
Lyu S.M.
Suh Y.J. [2 ]
机构
[1] Depto. de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada
[2] Department of Mathematics, Kyungpook National University
关键词
Projective Space; Structure Tensor; Real Hypersurface; Fundamental Tensor; Quaternionic Projective Space;
D O I
10.1023/A:1006627815212
中图分类号
学科分类号
摘要
The purpose of this paper is to give a non-existence property with the Lie derivative of the structure tensors φi and some characterizations of real hypersurfaces of type A1, A2 in a quaternionic projective space QPm in terms of the Lie derivatives of the second fundamental tensor A and the induced Riemannian metric g on the distribution D⊥ = Span {U1, U2, U3}.
引用
收藏
页码:241 / 251
页数:10
相关论文
共 46 条
  • [31] Derivatives of the Lie structure operator on a real hypersurface in complex projective space
    Juan de Dios Pérez
    David Pérez-López
    Monatshefte für Mathematik, 2021, 196 : 281 - 303
  • [32] Lie Derivatives of the Shape Operator of a Real Hypersurface in a Complex Projective Space
    Perez, Juan de Dios
    Perez-Lopez, David
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [33] Lie Derivatives of the Shape Operator of a Real Hypersurface in a Complex Projective Space
    Juan de Dios Pérez
    David Pérez-López
    Mediterranean Journal of Mathematics, 2021, 18
  • [34] SOME FORMULAS IN THEORY OF LIE DERIVATIVES IN FINSLER SPACES
    SINHA, RS
    TENSOR, 1972, 25 : 332 - 336
  • [35] Two Conditions on the Structure Jacobi Operator for Real Hypersurfaces in Complex Projective Space
    de Dios Perez, Juan
    Suh, Young Jin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (03): : 422 - 429
  • [36] Real Hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Lie D-parallel
    de Dios Perez, Juan
    Suh, Young Jin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02): : 306 - 316
  • [37] STRUCTURAL THEOREMS FOR TOPOLOGICAL ACTIONS OF Z2-TORI ON REAL, COMPLEX AND QUATERNIONIC PROJECTIVE SPACES
    HSIANG, WY
    COMMENTARII MATHEMATICI HELVETICI, 1974, 49 (04) : 479 - 491
  • [38] Reeb Lie derivatives on real hypersurfaces in complex hyperbolic two-plane Grassmannians
    Pak, Eunmi
    Kim, Gyu Jong
    FILOMAT, 2023, 37 (03) : 915 - 924
  • [39] Lie Derivatives and Ricci Tensor on Real Hypersurfaces in Complex Two-plane Grassmannians
    Jeong, Imsoon
    de Dios Perez, Juan
    Suh, Young Jin
    Woo, Changhwa
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (03): : 543 - 552
  • [40] REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH D⊥-PARALLEL LIE DERIVATIVES
    Suh, Young Jin
    De Dios Perez, Juan
    Jin, Hyung Jun
    Yang, Hae Young
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (03): : 711 - 726