Short-term load forecasting based on IPSO-DBiLSTM network with variational mode decomposition and attention mechanism

被引:0
|
作者
Yuan Huang
Zheng Huang
JunHao Yu
XiaoHong Dai
YuanYuan Li
机构
[1] Hebei University of Engineering,School of Information and Electrical Engineering
来源
Applied Intelligence | 2023年 / 53卷
关键词
Short-term load forecasting; Bidirectional long short-term memory; Variational mode decomposition; Attention mechanism; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate short-term load forecasting is crucial for the steady operation of the power system and power market schedule planning. The extraction of features and training of prediction models are challenging as the load series is extremely volatile and nonlinear. To address the above issues, we propose a deep bidirectional long short-term memory (DBiLSTM) network based on variational mode decomposition (VMD) and an attention mechanism, in which the model hyperparameters are optimized using the improved particle swarm optimization (IPSO) technique. In this study, the mode number k of the VMD is determined by the ratio of residual energy following decomposition. Subsequently, the DBiLSTM is stacked using multiple layers of BiLSTM for a more precise representation of time-series data and the capturing of information at different scales, thereby enabling nonlinear load sequence forecasting and enhancing the accuracy. Finally, the IPSO uses nonlinear decreasing inertia weights to overcome the drawbacks of premature convergence and local optima. The effectiveness and progress of the proposed method are evaluated using the power load dataset from the ninth electrical attribute modeling competition test questions.
引用
收藏
页码:12701 / 12718
页数:17
相关论文
共 50 条
  • [41] Short-term Load Forecasting based on Fuzzy Clustering Wavelet Decomposition and BP Neural Network
    Pan, Xueping
    Zhang, Ping
    Xue, Wenchao
    2011 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2011,
  • [42] Short-Term Load Forecasting Based on RBF Neural Network
    Zhao, Bing
    Liang, Yue
    Gao, Xin
    Liu, Xin
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [43] Neural Network Based Approach for Short-Term Load Forecasting
    Osman, Zainab H.
    Awad, Mohamed L.
    Mahmoud, Tawfik K.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1162 - +
  • [44] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [45] Short-term load forecasting based on fuzzy neural network
    Wang, Cuiru
    Cui, Zhikun
    Chen, Qi
    IITA 2007: WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, PROCEEDINGS, 2007, : 335 - 338
  • [46] Short-term Load Forecasting Based on BP Neural Network
    Li Yan-bin
    Li Peng
    Li Guan-hong
    ICPOM2008: PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE OF PRODUCTION AND OPERATION MANAGEMENT, VOLUMES 1-3, 2008, : 1182 - 1186
  • [47] Short-term Load Forecasting of BP Network Based on EMD
    Zheng, Xufeng
    Xiong, Hejin
    Wei, Di
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1093 - 1096
  • [48] Short-term Load Forecasting Based on Deep Belief Network
    Kong X.
    Zheng F.
    E Z.
    Cao J.
    Wang X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2018, 42 (05): : 133 - 139
  • [49] Wind power forecast based on variational mode decomposition and long short term memory attention network
    Zhou, Xiao
    Liu, Chengxi
    Luo, Yongjian
    Wu, Baoying
    Dong, Nan
    Xiao, Tianying
    Zhu, Haojun
    ENERGY REPORTS, 2022, 8 : 922 - 931
  • [50] Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
    Duan, Jiandong
    Wang, Peng
    Ma, Wentao
    Tian, Xuan
    Fang, Shuai
    Cheng, Yulin
    Chang, Ying
    Liu, Haofan
    ENERGY, 2021, 214