Time–frequency texture descriptors of EEG signals for efficient detection of epileptic seizure

被引:38
|
作者
Şengür A. [1 ]
Guo Y. [2 ]
Akbulut Y. [1 ]
机构
[1] Technology Faculty, Electrical and Electronics Engineering Department, Firat University, Elazig
[2] Department of Computer Science, University of Illinois at Springfield, Springfield, IL
关键词
EEG signal; Epileptic seizure detection; Support vector machines; Texture descriptor; Time–frequency image;
D O I
10.1007/s40708-015-0029-8
中图分类号
学科分类号
摘要
Detection of epileptic seizure in electroencephalogram (EEG) signals is a challenging task and requires highly skilled neurophysiologists. Therefore, computer-aided detection helps neurophysiologist in interpreting the EEG. In this paper, texture representation of the time–frequency (t–f) image-based epileptic seizure detection is proposed. More specifically, we propose texture descriptor-based features to discriminate normal and epileptic seizure in t–f domain. To this end, three popular texture descriptors are employed, namely gray-level co-occurrence matrix (GLCM), texture feature coding method (TFCM), and local binary pattern (LBP). The features that are obtained on the GLCM are contrast, correlation, energy, and homogeneity. Moreover, in the TFCM method, several statistical features are calculated. In addition, for the LBP, the histogram is used as a feature. In the classification stage, a support vector machine classifier is employed. We evaluate our proposal with extensive experiments. According to the evaluated terms, our method produces successful results. 100 % accuracy is obtained with LIBLINEAR. We also compare our method with other published methods and the results show the superiority of our proposed method. © 2016, The Author(s).
引用
收藏
页码:101 / 108
页数:7
相关论文
共 50 条
  • [21] Epileptic Seizure Detection by Quadratic Time-Frequency Distributions of Electroencephalogram signals
    Ghembaza, Fayza
    Djebbari, Abdelghani
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [22] Time Domain Analysis of Epileptic EEG for Seizure Detection
    Tessy, E.
    Muhammed, Shanir P. P.
    Manafuddin, Shaleena
    2016 INTERNATIONAL CONFERENCE ON NEXT GENERATION INTELLIGENT SYSTEMS (ICNGIS), 2016, : 175 - 178
  • [23] A Study of Combined Lossy Compression and Seizure Detection on Epileptic EEG Signals
    Binh Nguyen
    Ma, Wanli
    Tran, Dat
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 156 - 165
  • [24] Epileptic seizure detection using EEG signals and extreme gradient boosting
    Vanabelle, Paul
    De Handschutter, Pierre
    El Tahry, Riem
    Benjelloun, Mohammed
    Boukhebouze, Mohamed
    JOURNAL OF BIOMEDICAL RESEARCH, 2020, 34 (03): : 228 - 239
  • [25] Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals
    Liu, Jian
    Du, Yipeng
    Wang, Xiang
    Yue, Wuguang
    Feng, Jim
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 1995 - 2011
  • [26] Epileptic seizure detection using EEG signals and extreme gradient boosting
    Paul Vanabelle
    Pierre De Handschutter
    Ri?m El Tahry
    Mohammed Benjelloun
    Mohamed Boukhebouze
    TheJournalofBiomedicalResearch, 2020, 34 (03) : 228 - 239
  • [27] Interpreting deep learning models for epileptic seizure detection on EEG signals
    Gabeff, Valentin
    Teijeiro, Tomas
    Zapater, Marina
    Cammoun, Leila
    Rheims, Sylvain
    Ryvlin, Philippe
    Atienza, David
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 117
  • [28] A Surrogate Channel Based Analysis of EEG Signals for Detection of Epileptic Seizure
    Awan, Saqib Ejaz
    Khawaja, Sajid Gul
    Khan, Muazzam A.
    Akram, M. Usman
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2016, : 384 - 388
  • [29] Semigroup of EEG signals during epileptic seizure
    Binjadhnan F.A.M.
    Ahmad T.
    Journal of Applied Sciences, 2010, 10 (14) : 1466 - 1470
  • [30] Real-Time Epileptic Seizure Detection Using EEG
    Vidyaratne, Lasitha S.
    Iftekharuddin, Khan M.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (11) : 2146 - 2156