Time–frequency texture descriptors of EEG signals for efficient detection of epileptic seizure

被引:38
|
作者
Şengür A. [1 ]
Guo Y. [2 ]
Akbulut Y. [1 ]
机构
[1] Technology Faculty, Electrical and Electronics Engineering Department, Firat University, Elazig
[2] Department of Computer Science, University of Illinois at Springfield, Springfield, IL
关键词
EEG signal; Epileptic seizure detection; Support vector machines; Texture descriptor; Time–frequency image;
D O I
10.1007/s40708-015-0029-8
中图分类号
学科分类号
摘要
Detection of epileptic seizure in electroencephalogram (EEG) signals is a challenging task and requires highly skilled neurophysiologists. Therefore, computer-aided detection helps neurophysiologist in interpreting the EEG. In this paper, texture representation of the time–frequency (t–f) image-based epileptic seizure detection is proposed. More specifically, we propose texture descriptor-based features to discriminate normal and epileptic seizure in t–f domain. To this end, three popular texture descriptors are employed, namely gray-level co-occurrence matrix (GLCM), texture feature coding method (TFCM), and local binary pattern (LBP). The features that are obtained on the GLCM are contrast, correlation, energy, and homogeneity. Moreover, in the TFCM method, several statistical features are calculated. In addition, for the LBP, the histogram is used as a feature. In the classification stage, a support vector machine classifier is employed. We evaluate our proposal with extensive experiments. According to the evaluated terms, our method produces successful results. 100 % accuracy is obtained with LIBLINEAR. We also compare our method with other published methods and the results show the superiority of our proposed method. © 2016, The Author(s).
引用
收藏
页码:101 / 108
页数:7
相关论文
共 50 条
  • [1] Novel quadratic time-frequency features in EEG signals for robust detection of epileptic seizure
    Ghembaza F.
    Djebbari A.
    Research on Biomedical Engineering, 2023, 39 (02) : 365 - 387
  • [2] Epileptic Seizure Detection using EEG Signals
    Khan, Irfan Mabood
    Khan, Mohd Maaz
    Farooq, Omar
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 111 - 117
  • [3] TIME-FREQUENCY IMAGE DESCRIPTORS-BASED FEATURES FOR EEG EPILEPTIC SEIZURE ACTIVITIES DETECTION AND CLASSIFICATION
    Boubchir, Larbi
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Cherif, Arab Ali
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 867 - 871
  • [4] Time and frequency domain pre-processing for epileptic seizure classification of epileptic EEG signals
    Dutta, Kusumika Krori
    Manohar, Premila
    Indira, K.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8217 - 8226
  • [5] Epileptic Seizure Detection Based on EEG Signals and CNN
    Zhou, Mengni
    Tian, Cheng
    Cao, Rui
    Wang, Bin
    Niu, Yan
    Hu, Ting
    Guo, Hao
    Xiang, Jie
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [6] Evaluation of time domain features on detection of epileptic seizure from EEG signals
    A. Sharmila
    P. Geethanjali
    Health and Technology, 2020, 10 : 711 - 722
  • [7] Evaluation of time domain features on detection of epileptic seizure from EEG signals
    Sharmila, A.
    Geethanjali, P.
    HEALTH AND TECHNOLOGY, 2020, 10 (03) : 711 - 722
  • [8] FPGA Implementation for Epileptic Seizure Detection using Amplitude and Frequency Analysis of EEG Signals
    Selvathi, D.
    Selvaraj, Henry
    2017 25TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG), 2017, : 183 - 192
  • [9] CLASSIFICATION OF EEG SIGNALS FOR DETECTION OF EPILEPTIC SEIZURE ACTIVITIES BASED ON LBP DESCRIPTOR OF TIME-FREQUENCY IMAGES
    Boubchir, Larbi
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Cheripf, Arab Ali
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3758 - 3762
  • [10] Multiclass Epileptic Seizure Classification Using Time-Frequency Analysis of EEG Signals
    Acharjee, Partha Pratim
    Shahnaz, Celia
    2012 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2012,