Lifschitz Tails for Random Schrödinger Operator in Bernoulli Distributed Potentials

被引:0
|
作者
Michael Bishop
Vita Borovyk
Jan Wehr
机构
[1] University of California,Department of Mathematics
[2] Davis,Department of Mathematics
[3] University of Cincinnati,Department of Mathematics
[4] University of Arizona,undefined
来源
关键词
Random Schrödinger operator; Lifschitz tail; Bernoulli random variables;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an elementary proof of Lifschitz tail behavior for random discrete Schrödinger operators with a Bernoulli-distributed potential. The proof approximates the low eigenvalues by eigenvalues of sine waves supported where the potential takes its lower value. This is motivated by the idea that the eigenvectors associated to the low eigenvalues react to the jump in the values of the potential as if the jump were infinite.
引用
收藏
页码:151 / 162
页数:11
相关论文
共 50 条
  • [21] Matrix Schrödinger operator with δ-interactions
    A. S. Kostenko
    M. M. Malamud
    D. D. Natyagailo
    Mathematical Notes, 2016, 100 : 49 - 65
  • [22] A discrete Schrödinger operator on a graph
    Yu. P. Chuburin
    Theoretical and Mathematical Physics, 2010, 165 : 1335 - 1347
  • [23] The Scaling Limit of the Critical One-Dimensional Random Schrödinger Operator
    Eugene Kritchevski
    Benedek Valkó
    Bálint Virág
    Communications in Mathematical Physics, 2012, 314 : 775 - 806
  • [24] On the spectrum of a vector Schrödinger operator
    R. S. Ismagilov
    A. G. Kostyuchenko
    Doklady Mathematics, 2006, 74 : 854 - 856
  • [25] On the spectrum of a vector Schrödinger operator
    R. S. Ismagilov
    A. G. Kostyuchenko
    Functional Analysis and Its Applications, 2007, 41 : 31 - 41
  • [26] A Poisson Formula for the Schrödinger Operator
    Rémi Carles
    Tohru Ozawa
    Journal of Fourier Analysis and Applications, 2008, 14 : 475 - 483
  • [27] On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator
    Yu. P. Chuburin
    Mathematical Notes, 1997, 62 : 648 - 654
  • [28] Schrödinger Operators with Random Sparse Potentials. Existence of Wave Operators
    Denis Krutikov
    Letters in Mathematical Physics, 2004, 67 : 133 - 139
  • [30] Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials
    Qing-Hui Liu
    Zhi-Ying Wen
    Potential Analysis, 2004, 20 : 33 - 59