Lifschitz Tails for Random Schrödinger Operator in Bernoulli Distributed Potentials

被引:0
|
作者
Michael Bishop
Vita Borovyk
Jan Wehr
机构
[1] University of California,Department of Mathematics
[2] Davis,Department of Mathematics
[3] University of Cincinnati,Department of Mathematics
[4] University of Arizona,undefined
来源
关键词
Random Schrödinger operator; Lifschitz tail; Bernoulli random variables;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an elementary proof of Lifschitz tail behavior for random discrete Schrödinger operators with a Bernoulli-distributed potential. The proof approximates the low eigenvalues by eigenvalues of sine waves supported where the potential takes its lower value. This is motivated by the idea that the eigenvectors associated to the low eigenvalues react to the jump in the values of the potential as if the jump were infinite.
引用
收藏
页码:151 / 162
页数:11
相关论文
共 50 条
  • [1] Lifschitz Tails for Random Schrodinger Operator in Bernoulli Distributed Potentials
    Bishop, Michael
    Borovyk, Vita
    Wehr, Jan
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (01) : 151 - 162
  • [2] Lifshits Tails for Random Schrödinger Operators with Nonsign Definite Potentials
    Fatma Ghribi
    Annales Henri Poincaré, 2008, 9 : 595 - 624
  • [3] Lifshitz tails for random perturbations of periodic Schrödinger operators
    Frédéric Klopp
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2002, 112 : 147 - 162
  • [4] Ground State Energy of the One-Dimensional Discrete Random Schrödinger Operator with Bernoulli Potential
    Michael Bishop
    Jan Wehr
    Journal of Statistical Physics, 2012, 147 : 529 - 541
  • [5] Dynamical Localization for the Random Dimer Schrödinger Operator
    Stephan De Bièvre
    François Germinet
    Journal of Statistical Physics, 2000, 98 : 1135 - 1148
  • [6] Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. II. Distributions with Heavy Tails
    A. Astrauskas
    Journal of Statistical Physics, 2012, 146 : 98 - 117
  • [7] Lifshitz tails for 2-dimensional random Schrödinger operators
    Frédéric Klopp
    Thomas Wolff
    Journal d’Analyse Mathématique, 2002, 88 : 63 - 147
  • [8] Determining a Random Schrödinger Operator: Both Potential and Source are Random
    Jingzhi Li
    Hongyu Liu
    Shiqi Ma
    Communications in Mathematical Physics, 2021, 381 : 527 - 556
  • [9] Discrete Schrödinger Operator on a Tree, Angelesco Potentials, and Their Perturbations
    A. I. Aptekarev
    S. A. Denisov
    M. L. Yattselev
    Proceedings of the Steklov Institute of Mathematics, 2020, 311 : 1 - 9
  • [10] Must the Spectrum of a Random Schrödinger Operator Contain an Interval?
    David Damanik
    Anton Gorodetski
    Communications in Mathematical Physics, 2022, 393 : 1583 - 1613