On topologically distinct solutions of the Dirichlet problem for Yang-Mills connections

被引:0
|
作者
Takeshi Isobe
Antonella Marini
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Tokyo Institute of Technology,undefined
[4] Oh-okayama,undefined
[5] Meguro-ku,undefined
[6] Tokyo 152,undefined
[7] Japan; e-mail: isobe@math.titech.ac.jp,undefined
[8] Department of Mathematics,undefined
[9] University of Utah,undefined
[10] Salt Lake City,undefined
[11] Utah,undefined
[12] USA; e-mail: marini@math.utah.edu,undefined
[13] Dipartimento di Matematica,undefined
[14] Universita' di L'Aquila,undefined
[15] 67100 L'Aquila,undefined
[16] Italy; e-mail: marini@smaq20.univaq.it,undefined
关键词
Mathematics Subject Classification:35J50; 58E15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for generic Dirichlet boundary data there exist infinitely many topologically distinct solutions to the Dirichlet problem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $SU(2)$\end{document}-Yang-Mills equations over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $B^4$\end{document}. These are absolute Yang-Mills minimizers in topologically distinct connected components of the space of connections considered. There is a special case for which only finitely many topologically distinct solutions can be found by our method. This corresponds to the simultaneous existence of self dual and anti-self dual solutions, for the given boundary data. If the boundary data is non-flat there exists always more than one solution. This paper generalizes to Yang-Mills fields an important result by Brezis and Coron, who show existence of more than one minimizing harmonic map for non-constant Dirichlet data in two dimensions.
引用
收藏
页码:345 / 358
页数:13
相关论文
共 50 条