An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

被引:0
|
作者
Ali Feizmohammadi
Tony Liimatainen
Yi-Hsuan Lin
机构
[1] The Fields Institute for Research in Mathematical Sciences,Department of Mathematics and Statistics
[2] University of Helsinki,Department of Applied Mathematics
[3] National Yang Ming Chiao Tung University,undefined
来源
Annals of PDE | 2023年 / 9卷
关键词
Inverse problems; Boundary determination; Semilinear elliptic equation; Riemannian manifold; Conformally transversally anisotropic; Gaussian quasimodes; WKB construction;
D O I
暂无
中图分类号
学科分类号
摘要
Given a conformally transversally anisotropic manifold (M, g), we consider the semilinear elliptic equation (-Δg+V)u+qu2=0onM.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta _{g}+V)u+qu^2=0\quad \hbox { on}\ M. \end{aligned}$$\end{document}We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity qu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qu^2$$\end{document}, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
引用
收藏
相关论文
共 50 条
  • [21] On a semilinear elliptic equation with inverse-square potential
    Haïm Brezis
    Louis Dupaigne
    Alberto Tesei
    Selecta Mathematica, 2005, 11
  • [22] The dirichlet problem for a degenerate semilinear elliptic equation
    Jia, G.
    Zhao, P.
    Yang, X.
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2001, 25 (03): : 303 - 307
  • [23] On the Cauchy problem for a semilinear fractional elliptic equation
    Nguyen Huy Tuan
    Tran Dong Xuan
    Nguyen Anh Triet
    Lesnic, Daniel
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 80 - 86
  • [24] Hölder stability for a semilinear elliptic inverse problem
    Choulli, Mourad
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [25] AN INVERSE PROBLEM FOR A SEMILINEAR WAVE-EQUATION
    CAVATERRA, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2B (03): : 695 - 711
  • [26] AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION - REMARK
    LORENZI, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1983, 135 : 399 - 401
  • [27] ON ONE INVERSE PROBLEM FOR SEMILINEAR PARABOLIC EQUATION
    BELOV, YY
    DOKLADY AKADEMII NAUK SSSR, 1991, 316 (05): : 1034 - 1038
  • [28] On An Eigenvalue Problem For An Anisotropic Elliptic Equation
    Taarabti, Said
    El Allali, Zakaria
    Ben Haddouch, Khalil
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, ICAM'2018, 2019, 2074
  • [29] An Inverse Problem for a Quasilinear Elliptic Equation
    Lyubanova A.S.
    Velisevich A.V.
    Journal of Mathematical Sciences, 2023, 270 (4) : 591 - 599
  • [30] The anisotropic Calderon problem on 3-dimensional conformally Stackel manifolds
    Daude, Thierry
    Kamran, Niky
    Nicoleau, Francois
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (04) : 1669 - 1726