Given a conformally transversally anisotropic manifold (M, g), we consider the semilinear elliptic equation (-Δg+V)u+qu2=0onM.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} (-\Delta _{g}+V)u+qu^2=0\quad \hbox { on}\ M. \end{aligned}$$\end{document}We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity qu2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$qu^2$$\end{document}, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
机构:
Fields Inst Res Math Sci, Toronto, ON M5T 3J1, CanadaFields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
Feizmohammadi, Ali
Krupchyk, Katya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAFields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
Krupchyk, Katya
Oksanen, Lauri
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, PO 68,Pietari Kalmin Katu 5, Helsinki 00014, FinlandFields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
Oksanen, Lauri
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USA
Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R ChinaFields Inst Res Math Sci, Toronto, ON M5T 3J1, Canada
机构:
Fudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China
Fudan Univ, LMNS, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China
Lu, Shuai
Zhai, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China
机构:
MIT, Dept Math, Cambridge, MA 02139 USAMIT, Dept Math, Cambridge, MA 02139 USA
Hintz, Peter
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USA
Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R ChinaMIT, Dept Math, Cambridge, MA 02139 USA
Uhlmann, Gunther
Zhai, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R ChinaMIT, Dept Math, Cambridge, MA 02139 USA