An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia

被引:0
|
作者
Lei Li
Haogang Zhu
Longbo Wen
Weizhong Lan
Zhikuan Yang
机构
[1] Beihang University,State Key Laboratory of Software Development Environment
[2] Beihang University,Beijing Advanced Innovation Center for Big Data
[3] Central South University,Based Precision Medicine
[4] Hubei University of Science and Technology,Aier School of Ophthalmology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Convolution neural network; Graph convolution network; Myopia; Working distance; Light intensity;
D O I
暂无
中图分类号
学科分类号
摘要
To develop an approach of combining convolution neural network and graph convolution network to predict the progression of myopia. The working distance (WD) and light intensity (LI) of three hundred and seventeen children were recorded by Clouclip. The spherical equivalent refraction (SER) of the children were recorded by ophthalmologists. The data of WD and LI were filtered and mapped into a two-dimensional WD-LI space. The percentage of time (PoT) falling into each pixel in the space was calculated for each subject. The space of each subject can be thought of as an image and it is the input of our neural network model that combining several convolution layers and graph convolution layers. The output of the model is the SER. With tenfold cross validation, the validation error is 0.79 D when the L1 loss function is used. This study provides an innovative way to predict the development of myopia by WD and LI. The convolution neural network and graph convolution network are used to predict the myopia with WD and LI simultaneously, which has not been done before.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 50 条
  • [21] A Graph Convolution Neural Network Based Method for Insider Threat Detection
    Fei, Kexiong
    Zhou, Jiang
    Su, Lin
    Wang, Weiping
    Chen, Yong
    Zhang, Fan
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 66 - 73
  • [22] Image Co-segmentation using Graph Convolution Neural Network
    Banerjee, Sayan
    Hati, Avik
    Chaudhuri, Subhasis
    Velmurugan, Rajbabu
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [23] Graph Neural Network via Edge Convolution for Hyperspectral Image Classification
    Hu, Haojie
    Yao, Minli
    He, Fang
    Zhang, Fenggan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Deep Convolution Neural Network Model to Predict Relapse in Breast Cancer
    Jha, Alokkumar
    Verma, Ghanshyam
    Khan, Yasar
    Mehmood, Qaiser
    Rebholz-Schuhmann, Dietrich
    Sahay, Ratnesh
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 351 - 358
  • [25] Metaheuristic Algorithms for Convolution Neural Network
    Rere, L. M. Rasdi
    Fanany, Mohamad Ivan
    Arymurthy, Aniati Murni
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [26] APPLICATION OF DEEP CONVOLUTION NEURAL NETWORK
    Yang, Jiudong
    Li, Jianping
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 229 - 232
  • [27] A New Accelerator for Convolution Neural Network
    Wu, Fan
    Song, Jie
    Zhuang, Haoran
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7982 - 7985
  • [28] Convolution Neural Network for Image Registration
    Krishna, K.
    Abuomar, O.
    Al-khassaweneh, M.
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 73 - 76
  • [30] Parallelistic Convolution Neural Network Approach for Brain Tumor Diagnosis
    Mgbejime, Goodness Temofe
    Hossin, Md Altab
    Nneji, Grace Ugochi
    Monday, Happy Nkanta
    Ekong, Favour
    DIAGNOSTICS, 2022, 12 (10)