An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia

被引:0
|
作者
Lei Li
Haogang Zhu
Longbo Wen
Weizhong Lan
Zhikuan Yang
机构
[1] Beihang University,State Key Laboratory of Software Development Environment
[2] Beihang University,Beijing Advanced Innovation Center for Big Data
[3] Central South University,Based Precision Medicine
[4] Hubei University of Science and Technology,Aier School of Ophthalmology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Convolution neural network; Graph convolution network; Myopia; Working distance; Light intensity;
D O I
暂无
中图分类号
学科分类号
摘要
To develop an approach of combining convolution neural network and graph convolution network to predict the progression of myopia. The working distance (WD) and light intensity (LI) of three hundred and seventeen children were recorded by Clouclip. The spherical equivalent refraction (SER) of the children were recorded by ophthalmologists. The data of WD and LI were filtered and mapped into a two-dimensional WD-LI space. The percentage of time (PoT) falling into each pixel in the space was calculated for each subject. The space of each subject can be thought of as an image and it is the input of our neural network model that combining several convolution layers and graph convolution layers. The output of the model is the SER. With tenfold cross validation, the validation error is 0.79 D when the L1 loss function is used. This study provides an innovative way to predict the development of myopia by WD and LI. The convolution neural network and graph convolution network are used to predict the myopia with WD and LI simultaneously, which has not been done before.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 50 条
  • [1] An Approach of Combining Convolution Neural Network and Graph Convolution Network to Predict the Progression of Myopia
    Li, Lei
    Zhu, Haogang
    Wen, Longbo
    Lan, Weizhong
    Yang, Zhikuan
    NEURAL PROCESSING LETTERS, 2023, 55 (01) : 247 - 257
  • [2] A graph convolution network based latency prediction algorithm for convolution neural network
    Li Z.
    Zhang R.
    Tan W.
    Ren Y.
    Lei M.
    Wu H.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (12): : 2450 - 2459
  • [3] A Load Forecasting Approach Based on Graph Convolution Neural Network
    Gan, Jixiang
    Pan, Li
    Jin, Yuanyuan
    Liu, Qi
    Liu, Xiaodong
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 896 - 898
  • [4] Convolution in Convolution for Network in Network
    Pang, Yanwei
    Sun, Manli
    Jiang, Xiaoheng
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1587 - 1597
  • [5] Graph convolution neural network for recommendation using graph negative sampling
    Huang H.
    Mu C.
    Fang Y.
    Liu Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (01): : 86 - 99
  • [6] Combining knowledge extension with convolution neural network for diabetes prediction
    Cheng, Haitao
    Zhu, Jingshu
    Li, Peng
    Xu, He
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [7] Graph Partition Convolution Neural Network for Pedestrian Trajectory Prediction
    Wang, Ruiyang
    Li, Ming
    Zhang, Pin
    Wen, Fan
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 457 - 462
  • [8] Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction
    Guo, Kan
    Hu, Yongli
    Qian, Zhen
    Liu, Hao
    Zhang, Ke
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) : 1138 - 1149
  • [9] Near-surface PM2.5 prediction combining the complex network characterization and graph convolution neural network
    Zhao, Guyu
    He, Hongdou
    Huang, Yifang
    Ren, Jiadong
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (24): : 17081 - 17101
  • [10] Near-surface PM2.5 prediction combining the complex network characterization and graph convolution neural network
    Guyu Zhao
    Hongdou He
    Yifang Huang
    Jiadong Ren
    Neural Computing and Applications, 2021, 33 : 17081 - 17101