Complexity of stability in trading networks

被引:0
|
作者
Tamás Fleiner
Zsuzsanna Jankó
Ildikó Schlotter
Alexander Teytelboym
机构
[1] Budapest University of Technology and Economics,Institute of Economics
[2] Centre for Economic and Regional Studies,undefined
[3] Corvinus University of Budapest,undefined
[4] University of Oxford,undefined
来源
关键词
Matching markets; Market design; Computational complexity; Trading networks; Flow networks; Supply chains; Trail stability; Chain stability; Stability; Contracts; C78; L14;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient computability is an important property of solution concepts. We consider the computational complexity of finding and verifying various solution concepts in trading networks—multi-sided matching markets with bilateral contracts and without transferable utility—under the assumption of full substitutability of agents’ preferences. It is known that outcomes that satisfy trail stability always exist and can be found in linear time. However, we show that the existence of stable outcomes—immune to deviations by arbitrary sets of agents—is an NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf{N}}}{{\textsf{P}}}$$\end{document}-hard problem in trading networks. We also show that even verifying whether a given outcome is stable is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf{N}}}{{\textsf{P}}}$$\end{document}-hard in trading networks.
引用
收藏
页码:629 / 648
页数:19
相关论文
共 50 条
  • [41] Stability and Performance Verification of Dynamical Systems Controlled by Neural Networks: Algorithms and Complexity
    Korda, Milan
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3265 - 3270
  • [42] Stability and competitive equilibria in multi-unit trading networks with discrete concave utility functions
    Ikebe, Yoshiko T.
    Sekiguchi, Yosuke
    Shioura, Akiyoshi
    Tamura, Akihisa
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2015, 32 (02) : 373 - 410
  • [43] Neural networks in financial trading
    Sermpinis, Georgios
    Karathanasopoulos, Andreas
    Rosillo, Rafael
    de la Fuente, David
    ANNALS OF OPERATIONS RESEARCH, 2021, 297 (1-2) : 293 - 308
  • [44] Trading Networks with General Preferences
    Schlegel, Jan Christoph
    ACM EC '19: PROCEEDINGS OF THE 2019 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2019, : 63 - 63
  • [45] Bargaining in endogenous trading networks
    Bedayo, Mikel
    Mauleon, Ana
    Vannetelbosch, Vincent
    MATHEMATICAL SOCIAL SCIENCES, 2016, 80 : 70 - 82
  • [46] Adaptive networks of trading agents
    Burda, Z.
    Krzywicki, A.
    Martin, O. C.
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [47] Stability and competitive equilibria in multi-unit trading networks with discrete concave utility functions
    Yoshiko T. Ikebe
    Yosuke Sekiguchi
    Akiyoshi Shioura
    Akihisa Tamura
    Japan Journal of Industrial and Applied Mathematics, 2015, 32 : 373 - 410
  • [48] Bargaining Frictions in Trading Networks
    Polanski, Arnold
    Vega-Redondo, Fernando
    B E JOURNAL OF THEORETICAL ECONOMICS, 2018, 18 (01):
  • [49] Trading Networks with Bilateral Contracts
    Fleiner, Tamas
    Janko, Zsuzsanna
    Tamura, Akihisa
    Teytelboym, Alexander
    WEB AND INTERNET ECONOMICS, WINE 2018, 2018, 11316 : 444 - 444
  • [50] Neural networks in financial trading
    Georgios Sermpinis
    Andreas Karathanasopoulos
    Rafael Rosillo
    David de la Fuente
    Annals of Operations Research, 2021, 297 : 293 - 308