Complexity of stability in trading networks

被引:0
|
作者
Tamás Fleiner
Zsuzsanna Jankó
Ildikó Schlotter
Alexander Teytelboym
机构
[1] Budapest University of Technology and Economics,Institute of Economics
[2] Centre for Economic and Regional Studies,undefined
[3] Corvinus University of Budapest,undefined
[4] University of Oxford,undefined
来源
关键词
Matching markets; Market design; Computational complexity; Trading networks; Flow networks; Supply chains; Trail stability; Chain stability; Stability; Contracts; C78; L14;
D O I
暂无
中图分类号
学科分类号
摘要
Efficient computability is an important property of solution concepts. We consider the computational complexity of finding and verifying various solution concepts in trading networks—multi-sided matching markets with bilateral contracts and without transferable utility—under the assumption of full substitutability of agents’ preferences. It is known that outcomes that satisfy trail stability always exist and can be found in linear time. However, we show that the existence of stable outcomes—immune to deviations by arbitrary sets of agents—is an NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf{N}}}{{\textsf{P}}}$$\end{document}-hard problem in trading networks. We also show that even verifying whether a given outcome is stable is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textsf{N}}}{{\textsf{P}}}$$\end{document}-hard in trading networks.
引用
收藏
页码:629 / 648
页数:19
相关论文
共 50 条
  • [1] Complexity of stability in trading networks
    Fleiner, Tamas
    Janko, Zsuzsanna
    Schlotter, Ildiko
    Teytelboym, Alexander
    INTERNATIONAL JOURNAL OF GAME THEORY, 2023, 52 (03) : 629 - 648
  • [2] Chain stability in trading networks
    Hatfield, John William
    Kominers, Scott Duke
    Nichifor, Alexandru
    Ostrovsky, Michael
    Westkamp, Alexander
    THEORETICAL ECONOMICS, 2021, 16 (01) : 197 - 234
  • [3] Chain Stability in Trading Networks
    Hatfield, John William
    Kominers, Scott Duke
    Nichifor, Alexandru
    Ostrovsky, Michael
    Westkamp, Alexander
    ACM EC'18: PROCEEDINGS OF THE 2018 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2018, : 617 - 618
  • [4] Stability and Competitive Equilibrium in Trading Networks
    Hatfield, John William
    Kominers, Scott Duke
    Nichifor, Alexandru
    Ostrovsky, Michael
    Westkamp, Alexander
    JOURNAL OF POLITICAL ECONOMY, 2013, 121 (05) : 966 - 1005
  • [5] Trading Positional Complexity vs Deepness in Coordinate Networks
    Zheng, Jianqiao
    Ramasinghe, Sameera
    Li, Xueqian
    Lucey, Simon
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 144 - 160
  • [6] Low Complexity Algorithmic Trading by Feedforward Neural Networks
    J. Levendovszky
    I. Reguly
    A. Olah
    A. Ceffer
    Computational Economics, 2019, 54 : 267 - 279
  • [7] Low Complexity Algorithmic Trading by Feedforward Neural Networks
    Levendovszky, J.
    Reguly, I
    Olah, A.
    Ceffer, A.
    COMPUTATIONAL ECONOMICS, 2019, 54 (01) : 267 - 279
  • [8] Stochastic Task Networks Trading Performance for Stability
    Mountakis, Kiriakos Simon
    Klos, Tomas
    Witteveen, Cees
    INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING, CPAIOR 2017, 2017, 10335 : 302 - 311
  • [9] Complexity and stability of ecological networks: a review of the theory
    Landi, Pietro
    Minoarivelo, Henintsoa O.
    Brannstrom, Ake
    Hui, Cang
    Dieckmann, Ulf
    POPULATION ECOLOGY, 2018, 60 (04) : 319 - 345
  • [10] On the Computational Complexity of Measuring Global Stability of Banking Networks
    Berman, Piotr
    DasGupta, Bhaskar
    Kaligounder, Lakshmi
    Karpinski, Marek
    ALGORITHMICA, 2014, 70 (04) : 595 - 647