Collider Interplay for Supersymmetry, Higgs and Dark Matter

被引:0
|
作者
O. Buchmueller
M. Citron
J. Ellis
S. Guha
J. Marrouche
K. A. Olive
K. de Vries
Jiaming Zheng
机构
[1] Imperial College,High Energy Physics Group, Blackett Lab.
[2] King’s College London,Theoretical Particle Physics and Cosmology Group, Department of Physics
[3] CERN,Physics Department
[4] BITS Pilani,William I. Fine Theoretical Physics Institute, School of Physics and Astronomy
[5] Univ. of Minnesota,undefined
来源
The European Physical Journal C | 2015年 / 75卷
关键词
Higgs Boson; Light Supersymmetric Particle; Benchmark Point; Sparticle Masse; Electroweak Precision Observable;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the potential impacts on the CMSSM of future LHC runs and possible e+e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^+ e^-$$\end{document} and higher-energy proton–proton colliders, considering searches for supersymmetry via  /ET\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$/ E_T$$\end{document} events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via /ET\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$/ E_T$$\end{document} searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m0,m1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0, m_{1/2}$$\end{document} and A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_0$$\end{document} of the CMSSM. Slepton measurements at CLIC would enable m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_0$$\end{document} and m1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{1/2}$$\end{document} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e+e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^+ e^-$$\end{document} collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stop-coannihilation strip or direct-channel A / H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton–proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.
引用
收藏
相关论文
共 50 条
  • [21] Supersymmetry and dark matter
    Roszkowski, L
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 124 : 30 - 37
  • [22] Supersymmetry and dark matter
    Arnowitt, R
    Dutta, B
    DARK MATTER IN ASTRO- AND PARTICLE PHYSICS, 2002, : 175 - 188
  • [23] DARK MATTER AND SUPERSYMMETRY
    Roszkowski, Leszek
    DARK MATTER IN ASTROPHYSICS AND PARTICLE PHYSICS (DARK 2009), 2010, : 51 - 65
  • [24] Dark matter and supersymmetry
    Scopel, S
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 271 - 276
  • [25] Dark Matter in Supersymmetry
    Heinemeyer, Sven
    Munoz, Carlos
    UNIVERSE, 2022, 8 (08)
  • [26] Collider constraints and prospects of a scalar singlet extension to Higgs portal dark matter
    Dupuis, Grace
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [27] Collider constraints and prospects of a scalar singlet extension to Higgs portal dark matter
    Grace Dupuis
    Journal of High Energy Physics, 2016
  • [28] Testing Higgs portal dark matter via Z fusion at a linear collider
    Kanemura, Shinya
    Matsumoto, Shigeki
    Nabeshima, Takehiro
    Taniguchi, Hiroyuki
    PHYSICS LETTERS B, 2011, 701 (05) : 591 - 596
  • [29] Model independent approach to focus point supersymmetry: from dark matter to collider searches
    Baer, H
    Krupovnickas, T
    Profumo, S
    Ullio, P
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (10): : 495 - 532
  • [30] Dark Higgs dark matter
    Mondino, Cristina
    Pospelov, Maxim
    Ruderman, Joshua T.
    Slone, Oren
    PHYSICAL REVIEW D, 2021, 103 (03)