Study of Volterra Integro-Differential Equations with Kernels Depending on a Parameter

被引:0
|
作者
V. V. Vlasov
R. Perez Ortiz
N. A. Rautian
机构
[1] Lomonosov Moscow State University,
来源
Differential Equations | 2018年 / 54卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We carry out spectral analysis of operator functions that are the symbols of integro-differential equations with unbounded operator coefficients in a separable Hilbert space. The structure and localization of the spectrum of operator functions which are symbols of these equations play an important role in studies of the asymptotic behavior of their solutions.
引用
收藏
页码:363 / 380
页数:17
相关论文
共 50 条
  • [1] Study of Volterra Integro-Differential Equations with Kernels Depending on a Parameter
    Vlasov, V. V.
    Ortiz, R. Perez
    Rautian, N. A.
    DIFFERENTIAL EQUATIONS, 2018, 54 (03) : 363 - 380
  • [2] Representation of solutions of integro-differential equations with kernels depending on the parameter
    R. Perez Ortiz
    N. A. Rautian
    Differential Equations, 2017, 53 : 139 - 143
  • [3] Representation of Solutions of Integro-Differential Equations with Kernels Depending on the Parameter
    Ortiz, R. Perez
    Rautian, N. A.
    DIFFERENTIAL EQUATIONS, 2017, 53 (01) : 139 - 143
  • [4] On Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals
    Vlasov, V. V.
    Rautian, N. A.
    DIFFERENTIAL EQUATIONS, 2021, 57 (04) : 517 - 532
  • [5] On Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals
    V. V. Vlasov
    N. A. Rautian
    Differential Equations, 2021, 57 : 517 - 532
  • [6] Singularly Perturbed Integro-Differential Systems with Kernels Depending on Solutions of Differential Equations
    Bobodzhanov, A. A.
    Kalimbetov, B. T.
    Safonov, V. F.
    DIFFERENTIAL EQUATIONS, 2023, 59 (05) : 707 - 719
  • [7] Singularly Perturbed Integro-Differential Systems with Kernels Depending on Solutions of Differential Equations
    A. A. Bobodzhanov
    B. T. Kalimbetov
    V. F. Safonov
    Differential Equations, 2023, 59 : 707 - 719
  • [8] INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE
    RAO, MR
    TSOKOS, CP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 528 - &
  • [9] On the perturbation of Volterra integro-differential equations
    Jung, Soon-Mo
    Sevgin, Sebaheddin
    Sevli, Hamdullah
    APPLIED MATHEMATICS LETTERS, 2013, 26 (07) : 665 - 669
  • [10] The Volterra Theory of Integro-Differential Equations
    Soldatov A.
    Zaripov S.
    Journal of Mathematical Sciences, 2023, 277 (3) : 467 - 475