Representation of Solutions of Integro-Differential Equations with Kernels Depending on the Parameter

被引:1
|
作者
Ortiz, R. Perez [1 ]
Rautian, N. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0012266117010141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integro-differential equations with unbounded operator coefficients in a separable Hilbert space are studied. These equations are an abstract form of the Gurtin-Pipkin-type equation, which describes finite-speed propagation of heat in media with memory. A representation of strong solutions of these equations is derived in the form of the sums of series in exponents that correspond to the spectral points of operator-functions that are the symbols of these equations.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 50 条
  • [1] Representation of solutions of integro-differential equations with kernels depending on the parameter
    R. Perez Ortiz
    N. A. Rautian
    Differential Equations, 2017, 53 : 139 - 143
  • [2] Study of Volterra Integro-Differential Equations with Kernels Depending on a Parameter
    Vlasov, V. V.
    Ortiz, R. Perez
    Rautian, N. A.
    DIFFERENTIAL EQUATIONS, 2018, 54 (03) : 363 - 380
  • [3] Study of Volterra Integro-Differential Equations with Kernels Depending on a Parameter
    V. V. Vlasov
    R. Perez Ortiz
    N. A. Rautian
    Differential Equations, 2018, 54 : 363 - 380
  • [4] Singularly Perturbed Integro-Differential Systems with Kernels Depending on Solutions of Differential Equations
    Bobodzhanov, A. A.
    Kalimbetov, B. T.
    Safonov, V. F.
    DIFFERENTIAL EQUATIONS, 2023, 59 (05) : 707 - 719
  • [5] Singularly Perturbed Integro-Differential Systems with Kernels Depending on Solutions of Differential Equations
    A. A. Bobodzhanov
    B. T. Kalimbetov
    V. F. Safonov
    Differential Equations, 2023, 59 : 707 - 719
  • [6] INTEGRO-DIFFERENTIAL EQUATIONS WITH REGULAR KERNELS
    Seitmuratov, A. Zh.
    Madelkhanova, A. Zh.
    Parmenova, M. Zh.
    Kanibaikyzy, K.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2018, 2 (318): : 37 - 45
  • [7] ASYMPTOTIC REPRESENTATION OF SOLUTIONS OF SYSTEM OF LINEAR INTEGRO-DIFFERENTIAL EQUATIONS CONTAINING SMALL PARAMETER
    SHKIL, MI
    VORONOI, OM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1975, (07): : 593 - 596
  • [8] SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS WITH SMALL KERNELS
    Burton, T. A.
    Purnaras, I. K.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2013, 25 (01) : 1 - 20
  • [9] A Problem with Parameter for the Integro-Differential Equations
    Bakirova, Elmira A.
    Assanova, Anar T.
    Kadirbayeva, Zhazira M.
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (01) : 34 - 54
  • [10] REGULARIZED ASYMPTOTICS OF SOLUTIONS TO INTEGRO-DIFFERENTIAL PARTIAL DIFFERENTIAL EQUATIONS WITH RAPIDLY VARYING KERNELS
    Bobodzhanov, A. A.
    Safonov, V. F.
    UFA MATHEMATICAL JOURNAL, 2018, 10 (02): : 3 - 13