Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone

被引:0
|
作者
D. E. Amundsen
M. P. Mortell
B. R. Seymour
机构
[1] Carleton University,School of Mathematics and Statistics
[2] University College Cork,Department of Applied Mathematics
[3] University of British Columbia,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Resonance; Spherical geometry; Geometrical acoustics limit; Shocks; Stratification; Hard (soft) spring; Primary 76Nxx; Secondary 74J30; 34F15;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of nonlinearity, geometry and inhomogeneity on the resonant motion of a gas contained in the frustum of a cone are investigated. The motion is radially symmetric, and the inhomogeneity arises from a body force term. We show how to construct a variable density, containing an arbitrary parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} , that can be used to approximate a given density ρ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho(r)}$$\end{document} . The approximate density allows us to solve exactly the eigenvalue equation associated with linear theory. This is the basis for continuous resonant solutions. There is a critical value of the parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} which separates when the system behaves like a hard or soft spring. When motions are shocked, they may be represented by the superposition of oppositely traveling modulated simple waves. In all cases, approximate solutions are compared with exact numerical solutions.
引用
收藏
页码:2647 / 2663
页数:16
相关论文
共 50 条