Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone

被引:0
|
作者
D. E. Amundsen
M. P. Mortell
B. R. Seymour
机构
[1] Carleton University,School of Mathematics and Statistics
[2] University College Cork,Department of Applied Mathematics
[3] University of British Columbia,Department of Mathematics
关键词
Resonance; Spherical geometry; Geometrical acoustics limit; Shocks; Stratification; Hard (soft) spring; Primary 76Nxx; Secondary 74J30; 34F15;
D O I
暂无
中图分类号
学科分类号
摘要
The effects of nonlinearity, geometry and inhomogeneity on the resonant motion of a gas contained in the frustum of a cone are investigated. The motion is radially symmetric, and the inhomogeneity arises from a body force term. We show how to construct a variable density, containing an arbitrary parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} , that can be used to approximate a given density ρ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho(r)}$$\end{document} . The approximate density allows us to solve exactly the eigenvalue equation associated with linear theory. This is the basis for continuous resonant solutions. There is a critical value of the parameter μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document} which separates when the system behaves like a hard or soft spring. When motions are shocked, they may be represented by the superposition of oppositely traveling modulated simple waves. In all cases, approximate solutions are compared with exact numerical solutions.
引用
收藏
页码:2647 / 2663
页数:16
相关论文
共 50 条
  • [1] Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone
    Amundsen, D. E.
    Mortell, M. P.
    Seymour, B. R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2647 - 2663
  • [2] On the transition between continuous and shocked solutions for resonant gas oscillations in the frustum of a closed cone
    Amundsen, D. E.
    Mortell, M. P.
    Seymour, B. R.
    JOURNAL OF FLUID MECHANICS, 2022, 937
  • [3] Resonant oscillations of an inhomogeneous gas between concentric spheres
    Seymour, Brian R.
    Mortell, Michael P.
    Amundsen, David E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2132): : 2149 - 2167
  • [4] Resonant oscillations of an inhomogeneous gas in a closed cylindrical tube
    Mortell, Michael P.
    Seymour, Brian R.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (03): : 619 - 628
  • [5] Effect of a Rigid Cone Inserted in a Tube on Resonant Gas Oscillations
    Shaidullin, L. R.
    Fadeev, S. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (05) : 2144 - 2150
  • [6] Effect of the radial temperature gradient on resonant oscillations of gas in a closed tube
    Fadeev, Sergey A.
    Gubaidullin, Damir A.
    Shaidullin, Linar R.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (06): : 4123 - 4132
  • [7] ON THE FREQUENCY-SPECTRUM OF INHOMOGENEOUS VOLCANO CONE OSCILLATIONS
    TRUBNIKOV, BA
    FIRSTOV, PP
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (03): : 587 - 590
  • [8] RESONANT LOSS-CONE MICROINSTABILITIES IN AN INHOMOGENEOUS PLASMA
    BEASLEY, CO
    BERK, HL
    FARR, WM
    PEARLSTE.LD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1440 - &
  • [9] Effect of the Cone-Shaped End Vertex Angle of a Closed Tube on Resonant Gas Oscillations
    Gubaidullin, D. A.
    Fadeev, S. A.
    Shaidullin, L. R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (05) : 1629 - 1633
  • [10] Effect of the Cone-Shaped End Vertex Angle of a Closed Tube on Resonant Gas Oscillations
    D. A. Gubaidullin
    S. A. Fadeev
    L. R. Shaidullin
    Lobachevskii Journal of Mathematics, 2023, 44 : 1629 - 1633