Lie ideals and centralizing generalized derivations of rings with involution

被引:0
|
作者
Oukhtite L. [1 ]
机构
[1] Département de Mathématiques, Faculté des Sciences et Techniques, Groupe d'Algèbre et Applications, Université Moulay Ismaïl, Errachidia, B. P. 509, Boutalamine
关键词
Generalized derivations; Rings with involution;
D O I
10.1007/s13366-011-0058-2
中图分类号
学科分类号
摘要
A classical result of Posner states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative. In this paper we extend the posner's result to the case of generalized derivations centralizing on Lie ideals of rings with involution. © 2011 The Author(s).
引用
收藏
页码:349 / 355
页数:6
相关论文
共 50 条
  • [31] MULTIPLICATIVE GENERALIZED DERIVATIONS ON LIE IDEALS IN SEMIPRIME RINGS II
    Koc, Emine
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 265 - 276
  • [32] Generalized derivations with nilpotent values on Lie ideals in semiprime rings
    Ammendolia, Francesco
    Scudo, Giovanni
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (03): : 727 - 743
  • [33] GENERALIZED DERIVATIONS ON LIE IDEALS AND POWER VALUES ON PRIME RINGS
    Scudo, Giovanni
    Ansari, Abu Zaid
    MATHEMATICA SLOVACA, 2015, 65 (05) : 975 - 980
  • [34] On Lie Ideals and Generalized Jordan Left Derivations of Prime Rings
    N. Rehman
    A. Z. Ansari
    Ukrainian Mathematical Journal, 2014, 65 : 1247 - 1256
  • [35] On an identity involving generalized derivations and Lie ideals of prime rings
    Sandhu, Gurninder Singh
    AIMS MATHEMATICS, 2020, 5 (04): : 3472 - 3479
  • [36] Left annihilator of generalized derivations on Lie ideals in prime rings
    Shujat F.
    Khan S.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2015, 64 (1): : 77 - 81
  • [37] On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings
    Ali S.
    Dhara B.
    Dar N.A.
    Khan A.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1): : 325 - 337
  • [38] Generalized derivations with Engel condition on Lie Ideals of prime rings
    Siddeeque, Mohammad Aslam
    Abdullah, Ali Ahmed
    Khan, Nazim
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) : 137 - 149
  • [39] A result on generalized skew derivations on Lie ideals in prime rings
    Ashraf M.
    De Filippis V.
    Khan A.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (2): : 341 - 354
  • [40] Commutators and generalized derivations acting on Lie ideals in prime rings
    Dhara B.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1509 - 1526