Energy Absorption Characteristics of 3D Lattice Structure Filled with Periodic Inner Core Based on 3D Printing

被引:0
|
作者
Xiaogang Ji
Lin Deng
Jianan Zhang
Yuhao Luan
Yushun Duan
机构
[1] Jiangnan University,Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering
关键词
3D printing; energy absorption; periodic lattice structure; stress platform;
D O I
暂无
中图分类号
学科分类号
摘要
The 3D lattice structure is a porous lightweight periodic structure with high specific stiffness and strength and has good energy absorption characteristics. In this study, flexible resin was used as the research material, and a microporous lattice structure with a periodic inner core was designed and fabricated using digital light processing 3D printing technology by vertical and horizontal printing, respectively. Quasi-static axial compression experiments were performed to study the mechanical properties and energy absorption properties of the porous lattice structure. At the same time, the cell body structure of an existing x-type unit was studied, and the ratio of the stress platform of the structure with different diameters and angle parameters was studied. In this study, after a combination of theoretical analysis, ANSYS finite element analysis and experimental verification, a certain angle of control was obtained, and the x-type porous lattice structure showed excellent energy absorption characteristics. The research results suggest broad applicability, and the structure can be used as an in vitro 3D scaffold material in skin tissue engineering component technology and can also be used as a high-quality cushioning or damping material in vibration and energy absorption applications.
引用
收藏
页码:6784 / 6794
页数:10
相关论文
共 50 条
  • [21] Is 3D printing an inclusive innovation?: An examination of 3D printing in Brazil
    Woodson, Thomas
    Alcantara, Julia Torres
    do Nascimento, Milena Silva
    TECHNOVATION, 2019, 80-81 : 54 - 62
  • [22] 3D Printing - Evaluating Particle Emissions of a 3D Printing Pen
    Sigloch, Heike
    Bierkandt, Frank S.
    Singh, Ajay, V
    Gadicherla, Ashish K.
    Laux, Peter
    Luch, Andreas
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (164): : 1 - 15
  • [23] ENHANCING ENERGY ABSORPTION CAPACITY OF PYRAMIDAL LATTICE STRUCTURES VIA GEOMETRICAL TAILORING AND 3D PRINTING
    Uddin, Mohammed Ayaz
    Barsoum, Imad
    Kumar, S.
    Schiffer, Andreas
    PROCEEDINGS OF ASME 2024 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2024, 2024,
  • [24] 3D Printing Characteristics of Wheat Flour
    Zhou H.
    Zhang P.
    Lu S.
    Nie Y.
    Li B.
    Shipin Kexue/Food Science, 2022, 43 (15): : 61 - 68
  • [25] Design optimization of PLA lattice in 3D printing
    Jain, R.
    Gupta, N.
    MATERIALS TODAY-PROCEEDINGS, 2022, 59 : 1577 - 1583
  • [26] 2022 roadmap on 3D printing for energy
    Tarancon, Albert
    Esposito, Vincenzo
    Torrell, Marc
    Di Vece, Marcel
    Son, Jae Sung
    Norby, Poul
    Barg, Sourav
    Grant, Patrik S.
    Vogelpoth, A.
    Linnenbrink, S.
    Brucki, M.
    Schopphoven, T.
    Gasser, A.
    Persembe, Elif
    Koufou, Dionysia
    Kuhn, Simon
    Ameloot, Rob
    Hou, Xu
    Engelbrecht, Kurt
    Bahl, Christian R. H.
    Pryds, Nini
    Wang, Jie
    Tsouris, Costas
    Miramontes, Eduardo
    Love, Lonnie
    Lai, Canhai
    Sun, Xin
    Kaern, Martin Ryhl
    Criscuolo, Gennaro
    Pedersen, David Bue
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (01):
  • [27] 3D Claying: 3D Printing and Recycling Clay
    Madrid, Javier Alonso
    Ortega, Guillermo Sotorrio
    Carabano, Javier Gorostiza
    Olsson, Nils O. E.
    Rios, Jose Antonio Tenorio
    CRYSTALS, 2023, 13 (03)
  • [28] Energy consumption consideration of 3D printing
    Annibaldi, Valeria
    Rotilio, Marianna
    2019 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 AND INTERNET OF THINGS (METROIND4.0&IOT), 2019, : 243 - 248
  • [29] 3D Printing for Electrochemical Energy Applications
    Browne, Michelle P.
    Redondo, Edurne
    Pumera, Martin
    CHEMICAL REVIEWS, 2020, 120 (05) : 2783 - 2810
  • [30] Multifunctional 3D lattice metamaterials for vibration mitigation and energy absorption
    Jiang, Weifeng
    Yin, Guofu
    Xie, Luofeng
    Yin, Ming
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 233