Online knowledge distillation network for single image dehazing

被引:0
|
作者
Yunwei Lan
Zhigao Cui
Yanzhao Su
Nian Wang
Aihua Li
Wei Zhang
Qinghui Li
Xiao Zhong
机构
[1] Xi’an Research Institute of High-Tech,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single image dehazing, as a key prerequisite of high-level computer vision tasks, catches more and more attentions. Traditional model-based methods recover haze-free images via atmospheric scattering model, which achieve favorable dehazing effect but endure artifacts, halos, and color distortion. By contrast, recent learning-based methods dehaze images by a model-free way, which achieve better color fidelity but tend to acquire under-dehazed results due to lacking of knowledge guiding. To combine these merits, we propose a novel online knowledge distillation network for single image dehazing named OKDNet. Specifically, the proposed OKDNet firstly preprocesses hazy images and acquires abundant shared features by a multiscale network constructed with attention guided residual dense blocks. After that, these features are sent to different branches to generate two preliminary dehazed images via supervision training: one branch acquires dehazed images via the atmospheric scattering model; another branch directly establishes the mapping relationship between hazy images and clear images, which dehazes images by a model-free way. To effectively fuse useful information from these two branches and acquire a better dehazed results, we propose an efficient feature aggregation block consisted of multiple parallel convolutions with different receptive. Moreover, we adopt a one-stage knowledge distillation strategy named online knowledge distillation to joint optimization of our OKDNet. The proposed OKDNet achieves superior performance compared with state-of-the-art methods on both synthetic and real-world images with fewer model parameters. Project website: https://github.com/lanyunwei/OKDNet.
引用
收藏
相关论文
共 50 条
  • [21] A Cascaded Convolutional Neural Network for Single Image Dehazing
    Li, Chongyi
    Guo, Jichang
    Porikli, Fatih
    Fu, Huazhu
    Pang, Yanwei
    IEEE ACCESS, 2018, 6 : 24877 - 24887
  • [22] Pyramid feature boosted network for single image dehazing
    Hu, Guangrui
    Tan, Anhui
    He, Liangtian
    Shen, Haozhen
    Chen, Hongming
    Wang, Chao
    Du, Huandi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (06) : 2099 - 2110
  • [23] FEATURE AGGREGATION ATTENTION NETWORK FOR SINGLE IMAGE DEHAZING
    Yan, Lan
    Zheng, Wenbo
    Gou, Chao
    Wang, Fei-Yue
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 923 - 927
  • [24] EENet: An effective and efficient network for single image dehazing
    Cui, Yuning
    Wang, Qiang
    Li, Chaopeng
    Ren, Wenqi
    Knoll, Alois
    PATTERN RECOGNITION, 2025, 158
  • [25] Unsupervised single image dehazing with generative adversarial network
    Wei Ren
    Li Zhou
    Jie Chen
    Multimedia Systems, 2023, 29 : 2923 - 2933
  • [26] Single Image Dehazing Based on Deep Neural Network
    Huang, Dewei
    Chen, Kexin
    Wang, Weixing
    Lu, Jianqiang
    2017 INTERNATIONAL CONFERENCE ON COMPUTER NETWORK, ELECTRONIC AND AUTOMATION (ICCNEA), 2017, : 294 - 299
  • [27] Feature aggregation and modulation network for single image dehazing
    Fei Tan
    Xiaoyuan Yu
    Renjie Wang
    Baoquan Ai
    Fengguo Li
    Multimedia Tools and Applications, 2024, 83 : 50269 - 50287
  • [28] Feature aggregation and modulation network for single image dehazing
    Tan, Fei
    Yu, Xiaoyuan
    Wang, Renjie
    Ai, Baoquan
    Li, Fengguo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 50269 - 50287
  • [29] Unsupervised single image dehazing with generative adversarial network
    Ren, Wei
    Zhou, Li
    Chen, Jie
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 2923 - 2933
  • [30] Recurrent Context Aggregation Network for Single Image Dehazing
    Wang, Chen
    Chen, Runqing
    Lu, Yang
    Yan, Yan
    Wang, Hanzi
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 419 - 423