Nonparametric maximum likelihood estimation in a non locally compact setting

被引:0
|
作者
Jean-Claude Massé
机构
[1] Université Laval,Département de Mathématiques et de Statistique
来源
Metrika | 1997年 / 46卷
关键词
M-estimation; -estimation; nonparametric maximum likelihood estimation; strong consistency; log likelihood dominance; estimation of a discrete probability measure; estimation of a unimodal density; estimation of densities with monotone failure rates; convergence of empirical measures; sequential compactness;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum likelihood estimation is considered in the context of infinite dimensional parameter spaces. It is shown that in some locally convex parameter spaces sequential compactness of the bounded sets ensures the existence of minimizers of objective functions and the consistency of maximum likelihood estimators in an appropriate topology. The theory is applied to revisit some classical problems of nonparametric maximum likelihood estimation, to study location parameters in Banach spaces, and finally to obtain Varadarajan’s theorem on the convergence of empirical measures in the form of a consistency result for a sequence of maximum likelihood estimators. Several parameter spaces sharing the crucial compactness property are identified.
引用
收藏
页码:123 / 145
页数:22
相关论文
共 50 条
  • [41] Nonparametric maximum-likelihood estimation of probability measures: existence and consistency
    Sagara, N
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 133 (02) : 249 - 271
  • [42] NONPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATION FOR POPULATION PHARMACOKINETICS, WITH APPLICATION TO CYCLOSPORINE
    MALLET, A
    MENTRE, F
    STEIMER, JL
    LOKIEC, F
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1988, 16 (03): : 311 - 327
  • [43] ESTIMATION OF NONPARAMETRIC ORDINAL LOGISTIC REGRESSION MODEL USING LOCAL MAXIMUM LIKELIHOOD ESTIMATION
    Rifada, Marisa
    Chamidah, Nur
    Ratnasari, Vita
    Purhadi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [44] Nonparametric maximum likelihood component separation
    Leloup, Clement
    Errard, Josquin
    Stompor, Radek
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [45] Maximum likelihood estimators: Nonparametric approach
    Huber C.
    Solev V.N.
    Vonta I.
    Journal of Mathematical Sciences, 2007, 147 (4) : 6975 - 6979
  • [46] Nonparametric maximum likelihood estimation from samples with irrelevant data and verification bias
    Lambert, D
    Tierney, L
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 937 - 944
  • [47] Nonparametric Sieve Maximum Likelihood Estimation of Semi-Competing Risks Data
    Huang, Xifen
    Xu, Jinfeng
    MATHEMATICS, 2022, 10 (13)
  • [48] Improved nonparametric penalized maximum likelihood estimation for arbitrarily censored survival data
    Tubbs, Justin D.
    Chen, Lane G.
    Thuan-Quoc Thach
    Sham, Pak C.
    STATISTICS IN MEDICINE, 2022, 41 (20) : 4006 - 4021
  • [49] SMOOTH NONPARAMETRIC MAXIMUM-LIKELIHOOD-ESTIMATION FOR POPULATION PHARMACOKINETICS, WITH APPLICATION TO QUINIDINE
    DAVIDIAN, M
    GALLANT, AR
    JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1992, 20 (05): : 529 - 556
  • [50] Poisson mean vector estimation with nonparametric maximum likelihood estimation and application to protein domain data
    Park, Hoyoung
    Park, Junyong
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 3789 - 3835