Numerical study of roughness model effect including low-Reynolds number model and wall function method at actual ship scale

被引:0
|
作者
Kunihide Ohashi
机构
[1] National Maritime Research Institute,
来源
Journal of Marine Science and Technology | 2021年 / 26卷
关键词
Roughness model; Full scale; Turbulence model; Actual ship; Wall function;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical study of roughness effects at an actual ship scale is performed. Low-Reynolds number roughness models based on the two-equation turbulence model are employed, meanwhile, a wall function method is also developed. First, the roughness models are examined for the 2D flat plate case at the Reynolds numbers of 1.0×107\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0 \times 10^7$$\end{document}, 1.0×108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0 \times 10^8$$\end{document} and 1.0×109.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\times 10^9.$$\end{document} The resistance coefficient increases with roughness height and uncertainty analysis of the resistance coefficient is performed. Additionally, the distributions of the non-dimensional velocities u+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^+$$\end{document} based on the non-dimensional heights y+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^+$$\end{document} of the low-Reynolds number models and the wall function method are compared for changing the roughness height. Next, the roughness models and wall function method are applied to the flows around a ship at full scale. The tanker hull form with the flow measurement result from an the actual sea test is selected. The propulsive condition with the free surface effect is achieved by the propeller model. The velocity contours are compared with the measured results of the actual ship. The results of the roughness models show good agreement in comparison with the smooth surface condition. The wall function method leads to reduced grid uncertainty with respect to the resistance coefficient and shows agreement with the measured velocity contours. Consequently, the wall function method is better at full scale.
引用
收藏
页码:24 / 36
页数:12
相关论文
共 50 条
  • [41] DEVELOPMENT OF NUMERICAL METHOD TO SIMULATE FLOWS AROUND A SHIP IN REGULAR WAVES INCLUDING THE EFFECT OF SHIP PROPULSION PLANT MODEL
    Ohashi, Kunihide
    VII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN MARINEENGINEERING (MARINE2017), 2017, : 975 - 984
  • [42] Reynolds number effect of large-scale model in natural wind
    Lu, Bin, 1600, Editorial Department of Journal of Chang'an University (Natural Science Edition) (34):
  • [43] MODIFICATION OF THE ALGEBRAIC TRANSITION MODEL FOR WALL ROUGHNESS EFFECT INCLUDING A ROUGH STRIP
    Straka, P.
    Prihoda, J.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2020, 2020, : 222 - 229
  • [44] Numerical investigation of effect of the design parameters of the counter-flow jet for drag reduction in hypersonic low-Reynolds number regime
    Yoon, H.
    Suzuki, K.
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [45] Low-reynolds-number k-ε model with elliptic relaxation function
    Rahman, MM
    Siikonen, T
    AIAA JOURNAL, 2006, 44 (02) : 392 - 396
  • [47] Numerical Study About the Effect of the Low Reynolds Number on the Performance in an Axial Compressor
    Choi, Minsuk
    Baek, Je Hyun
    Chung, Hee Taeg
    Oh, Seong Hwan
    Ko, Han Young
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2008, 32 (02) : 83 - 91
  • [48] Numerical Study on Laminar Separation Control Using Dynamic Hump in High-Loaded Low Pressure Turbine Cascade at Low-Reynolds Number
    Yang R.-F.
    Xu K.
    Zhong D.-D.
    Ge N.
    Tuijin Jishu/Journal of Propulsion Technology, 2019, 40 (02): : 267 - 275
  • [49] Numerical simulation research of moonpools effect in model scale on ship resistance
    Cheng X.-K.
    Zhou G.-P.
    Zhang Y.-X.
    Zhang J.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2020, 24 (05): : 589 - 598
  • [50] A dynamic subgrid-scale model for low-Reynolds-number channel flow
    Zhao, H
    Voke, PR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 23 (01) : 19 - 27