Numerical study of roughness model effect including low-Reynolds number model and wall function method at actual ship scale

被引:0
|
作者
Kunihide Ohashi
机构
[1] National Maritime Research Institute,
来源
Journal of Marine Science and Technology | 2021年 / 26卷
关键词
Roughness model; Full scale; Turbulence model; Actual ship; Wall function;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical study of roughness effects at an actual ship scale is performed. Low-Reynolds number roughness models based on the two-equation turbulence model are employed, meanwhile, a wall function method is also developed. First, the roughness models are examined for the 2D flat plate case at the Reynolds numbers of 1.0×107\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0 \times 10^7$$\end{document}, 1.0×108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0 \times 10^8$$\end{document} and 1.0×109.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\times 10^9.$$\end{document} The resistance coefficient increases with roughness height and uncertainty analysis of the resistance coefficient is performed. Additionally, the distributions of the non-dimensional velocities u+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^+$$\end{document} based on the non-dimensional heights y+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^+$$\end{document} of the low-Reynolds number models and the wall function method are compared for changing the roughness height. Next, the roughness models and wall function method are applied to the flows around a ship at full scale. The tanker hull form with the flow measurement result from an the actual sea test is selected. The propulsive condition with the free surface effect is achieved by the propeller model. The velocity contours are compared with the measured results of the actual ship. The results of the roughness models show good agreement in comparison with the smooth surface condition. The wall function method leads to reduced grid uncertainty with respect to the resistance coefficient and shows agreement with the measured velocity contours. Consequently, the wall function method is better at full scale.
引用
收藏
页码:24 / 36
页数:12
相关论文
共 50 条
  • [1] Numerical study of roughness model effect including low-Reynolds number model and wall function method at actual ship scale
    Ohashi, Kunihide
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2021, 26 (01) : 24 - 36
  • [2] NUMERICAL STUDY OF ROUGHNESS MODEL EFFECT AT ACTUAL SHIP SCALE
    Ohashi, Kunihide
    MARINE 2019: COMPUTATIONAL METHODS IN MARINE ENGINEERING VIII: VIII INTERNATIONAL CONFERENCE ONCOMPUTATIONAL METHODS IN MARINE ENGINEERING (MARINE 2019), 2019, : 706 - 717
  • [4] A two-scale low-Reynolds number turbulence model
    Jaw, SY
    Hwang, RR
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 33 (05) : 695 - 710
  • [5] Roughness corrections for turbulence models: low-Reynolds and wall function approaches
    Chedevergne, F.
    TURBULENCE HEAT AND MASS TRANSFER 9 (THMT-18), 2018, : 471 - 482
  • [6] Numerical investigation on the performance of low-Reynolds number k - ε model for a buoyancy-opposed wall jet flow
    Rathore, Sushil Kumar
    Das, Manab Kumar
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 95 : 636 - 649
  • [7] A low-Reynolds number explicit algebraic stress model
    Rahman, M. M.
    Siikonen, T.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (06): : 1364 - 1376
  • [8] Computational Study of Interaction of Turbulent Offset Jet and Wall Jet Flow Using Low-Reynolds Number Model
    Rathore, Sushil Kumar
    Rathore, Sanjay Singh
    Chaudhuri, Sumanta
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [9] Study on grid dependence of numerical simulation for circular pipe flow using low-Reynolds number k-ε model
    Kumagai, Y
    Tanaka, H
    HYDRAULICS OF RIVERS WATER WORKS AND MACHINERY, VOL II, THEME D, PROCEEDINGS: 21ST CENTURY: THE NEW ERA FOR HYDRAULIC RESEARCH AND ITS APPLICATIONS, 2001, : 552 - 558
  • [10] Correction of low-Reynolds number turbulence model to hydrocarbon fuel at supercritical pressure
    Tao, Zhi
    Cheng, Zeyuan
    Zhu, Jianqin
    Hu, Xizhuo
    Wang, Longyun
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 77 : 156 - 167